


Final Report – 2011

FA9550-08-1-0187

AFOSR Systems and Software Program

Coordinating Learning Agents for Active Information Collection

PI: Kagan Tumer
Organization: Oregon State University

June 30, 2011

1



Contents

1 Cover Sheet 3

2 Executive Summary 4

2.1 Objectives . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 4

2.2 Key Contributions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 4

3 Publication List 6

4 Technical Contributions 8

4.1 Learning from Actions not Taken . . . . . . . . . . . . . . . . . . . . . . . . . . 8

4.2 Learning from Blackbox Utility Functions . . . . . . . . . . . . . . . . . . . . . 8

4.3 Coordinating Heterogeneous Teams of Robots . . . . . . . . . . . . . . . . . . . 8

Appendix A: Paper pdf files 8

2



1 Cover Sheet

Title: Coordinating Learning Agents for Active Information Collection PI: Kagan Tumer
Institution: Oregon State University
Grant number: FA9550-08-1-0187

Status and Accomplishments: See abstract below for details
Personnel Supported:

Kagan Tumer
Ehsan Nasroullahi
Scott Proper
Max Salichon
Matt Knudson
Jack Shepherd

Reporting Period Start: 4/1/2008
Reporting Period End: 3/31/2011

Changes in Research Objectives: None
Extensions Requested/Granted: None

Honors and awards (all paper numbers refer to publications list below)
1. Nomination for best applications paper at GECCO 2010 for paper number 1
2. Nomination for best applications paper at GECCO 2010 for paper number 3
3. 1st runner up for best theoretical paper at ANNIE 2008 for paper number 11
3. 2nd runner up for best applications paper at ANNIE 2008 for paper number 10

3



2 Executive Summary

The ability to autonomously coordinate a team of agents to actively collect information is
critical to a wide array of Air Force missions. With computing power becoming both cheaper
and more powerful, there is a trend to push critical decision making capabilities “downstream”,
towards the data collection nodes rather than wait for data to arrive to a massive centralized
location before a decision is made. This new computing paradigm relies on networked agents
to actively collect, process and query data and promises to significantly improve both the
quality/relevance of the collected data and the associating decision making. The technological
bottlenecks for such a computing scheme stem from a lack of mathematics and algorithms to
manage such systems rather than difficulties associated with building and deploying them.

2.1 Objectives

This project provides a comprehensive solution to the problem of intelligent data gathering and
decision making by ensuring that the information collected by an agent has the most “added
value” to the full network. The three specific objectives of this project are to:

1. Derive the system properties that quantify the alignment between local and network
utilities;

2. Derive (and update) agent utilities under communication and computation restrictions
that will lead to good network utilities; and

3. Derive agent utilities and learning strategies for agents in dynamic and stochastic envi-
ronments with “black box” network utility functions.

2.2 Key Contributions

The key contribution of this project is to shift the focus from “how to optimize” to “what to
optimize” in difficult coordination problems. The impact of this work extends to a large class
of problems relevant to the Air Force including satellite communication systems, reconfigurable
flight control systems, sensor networks, and intelligence gathering in hybrid networks.

We obtained significant results supporting all three objectives. In particular we have:

• Applied system characteristics to derive agent utility functions for coordinating informa-
tion gathering robots. Robots using such utility functions to learn actions significantly

4



outperform other robots in a simulated information gathering task requiring coordina-
tion. This result directly supports objective 1.

• Developed a new and fast learning algorithm supporting multiagent coordination. These
results are based on learning from “actions not taken”, meaning that the agents update
their estimate of potential actions’ outcomes based on information gathered by other
agents.This results directly supports objective 2 by improving the network utility.

• Developed agent utilities that promote team formation in multiagent systems and allow
agents to achieve good values of network utility without requiring communication. This
results directly supports objective 2. Papers:

• Decomposed network utilities into components to allow approximations to agent utilities
that promote coordination in the presence of “black box” utility functions. This results
directly supports objective 3. Papers:

• Achieved coordinated behavior in a team of heterogeneous agents aiming to achieve a
high level utility. This objective directly supports all three objectives and the overall
goals of the proposal.

5



3 Publication List

Based on the work performed on this project, we published 2 journal articles and 10 conference
papers, 6 of which were in highly refereed conferences with acceptance rates below 50%. In
addition one journal paper was recently submitted for review.

Article submitted based on work performed in this project:

2011:

J. Sepherd III and K. Tumer. A Hierarchical Approach to Autonomous Quadrotor Control.
Submitted in 2011.

Articles published based on work performed in this project:

2010:

1. J. Sepherd III and K. Tumer. Robust Neuro-Control for A Micro Quadrotor. Proceedings
of the 2010 Genetic and Evolutionary Computation Conference. Portland, OR, July 2010
(45% acceptance). Nominated for best application paper award.

2. M. Knudson and K. Tumer. Coevolution of Heterogeneous Multi-Robot Teams. Pro-
ceedings of the 2010 Genetic and Evolutionary Computation Conference. Portland, OR,
July 2010 (45% acceptance)

3. M. Salichon and K. Tumer. A Neuro-Evolutionary Approach to Micro Aerial Vehicle
Control. Proceedings of the 2010 Genetic and Evolutionary Computation Conference.
Portland, OR, July 2010 (45% acceptance). Nominated for best application paper
award.

4. M. Knudson and K. Tumer. Robot Coordination with Ad-hoc Team Formation AAMAS
(extended abstract). Proceedings of the 2010 Genetic and Evolutionary Computation
Conference. May 2010 (43% acceptance)

5. M. Knudson and K. Tumer. Policy Search and Policy Gradient Methods for Autonomous
Navigation. Proceedings of the 2010 Genetic and Evolutionary Computation Conference.
Portland, OR, July 2010 (45% acceptance)

6



2009:

6. N. Khani and K. Tumer. Learning from Actions Not Taken: A Multiagent Learning Al-
gorithm (extended abstract).In Proceedings of the Eighth International Joint Conference
on Autonomous Agents and MultiAgent Systems. Budapest, Hungary, May 2009. (41%
acceptance).

7. K. Tumer and N. Khani. Learning from Actions Not Taken in Multiagent Systems.
Advances in Complex Systems, Vol 12:455–473, 2009.

8. K. Tumer and A. Agogino. Multiagent Learning for Black Box System Reward Functions.
Advances in Complex Systems, Vol 12:475–492, 2009.

2008:

9. M. Knudson and K. Tumer. Towards Coordinating Autonomous Robots for Exploration
in Dynamic Environments. In Intelligent Engineering Systems through Articial Neural
Networks, Vol 18, pp. 587-594, ASME Press, November 2008.

10. M. Knudson and K. Tumer. Neuro-Evolutionary Navigation for Resource-Limited Mobile
Robots. In Intelligent Engineering Systems through Artificial Neural Networks, Vol 18,
pp. 27-34, ASME Press, November 2008. 2nd runner up for best application paper
award.

11. N. Khani and K. Tumer. Fast Multiagent Learning: Cashing in on Team Knowledge.
In Intelligent Engineering Systems through Artificial Neural Networks, Vol 18, pp 310,
ASME Press, November 2008. 1st runner up for best theoretical development
paper award.

12. M. Salichon and K. Tumer. A Neuro-evolutionary Approach to Micro Aerial Vehicle
Control. In Intelligent Engineering Systems through Artificial Neural Networks, Vol 18,
pp. 11-18, ASME Press, November 2008.

7



4 Technical Contributions

The key technical contributions of this work were to determine how to provide utilities for
individual components of a team to ensure the coordinated and efficient behavior of the full
team. to that end, three key results were (i) that agents can learn from each other without
explicitly trying each alternative action ; (ii) agents can derive local utilities from “blackbox”
network utility functions ; and t (iii) agents that learn together can achieve tight coordination
if their utilities are properly derived based on the characteristics derived in objectives 1 and
2. The attached three articles provide the key results from these two scientific contributions
of this work.

4.1 Learning from Actions not Taken

K. Tumer and N. Khani. Learning from Actions Not Taken in Multiagent Systems. Advances
in Complex Systems, Vol 12:455–473, 2009.

4.2 Learning from Blackbox Utility Functions

K. Tumer and A. Agogino. Multiagent Learning for Black Box System Reward Functions.
Advances in Complex Systems, Vol 12:475–492, 2009.

4.3 Coordinating Heterogeneous Teams of Robots

M. Knudson and K. Tumer. Coevolution of Heterogeneous Multi-Robot Teams. Proceedings
of the 2010 Genetic and Evolutionary Computation Conference. Portland, OR, July 2010.

8



September 16, 2009 16:40 WSPC/169-ACS 00230

Advances in Complex Systems, Vol. 12, Nos. 4 & 5 (2009) 455–473
c© World Scientific Publishing Company

LEARNING FROM ACTIONS NOT TAKEN
IN MULTIAGENT SYSTEMS

KAGAN TUMER∗ and NEWSHA KHANI†

Oregon State University, 204 Rogers Hall,
Corvallis, Oregon 97331, USA
∗kagan.tumer@oregonstate.edu

†khanin@onid.orst.edu

Received 31 January 2009
Revised 11 June 2009

In large cooperative multiagent systems, coordinating the actions of the agents is crit-
ical to the overall system achieving its intended goal. Even when the agents aim to
cooperate, ensuring that the agent actions lead to good system level behavior becomes
increasingly difficult as systems become larger. One of the fundamental difficulties in
such multiagent systems is the slow learning process where an agent not only needs to
learn how to behave in a complex environment, but also needs to account for the actions
of other learning agents. In this paper, we present a multiagent learning approach that
significantly improves the learning speed in multiagent systems by allowing an agent
to update its estimate of the rewards (e.g. value function in reinforcement learning) for
all its available actions, not just the action that was taken. This approach is based on
an agent estimating the counterfactual reward it would have received had it taken a
particular action. Our results show that the rewards on such “actions not taken” are
beneficial early in training, particularly when only particular “key” actions are used. We
then present results where agent teams are leveraged to estimate those rewards. Finally,
we show that the improved learning speed is critical in dynamic environments where
fast learning is critical to tracking the underlying processes.

Keywords: Multiagent learning; counterfactual reward; difference reward.

1. Introduction

Learning in large multiagent systems is a critical area of research with applica-
tions ranging from robocup soccer [26, 27], to rover coordination [19], to trading
agents [25, 43], to air traffic management [32]. What makes this problem partic-
ularly challenging is that the agents in the system provide a constantly changing
background in which each agent needs to learn its task. As a consequence, almost
by definition, all multiagent learning occurs in complex environments, where the
agents need to extract the underlying reward signal from the noise of the other
agents acting within the same environment.

Furthermore, typically, two learning problems are coupled where the agent needs
to solve both a temporal credit assignment problem (how to assign a reward received

455



September 16, 2009 16:40 WSPC/169-ACS 00230

456 K. Tumer and N. Khani

at the end of sequence of actions to each action) and a structural credit assignment
problem (how to assign credit to a particular agent at the end of a multiagent
task) [1, 15, 16, 28, 38, 41, 44]. The temporal credit assignment problem has been
extensively studied [10, 16, 28, 31, 30, 39, 42], and the structural credit assignment
problem has recently been investigated as well [4, 8, 11, 20, 23, 35].

Learning sequences of actions for multiagent systems has blended these two
areas of research and led to key advances [6, 8, 12, 26, 40]. In these cases, the
learning needs of the agents are modified to account for their presence in a larger
system [2, 11, 13, 22, 35, 37]. However, though these methods have yielded tremen-
dous advances in multiagent learning, they are principally based on an agent trying
an action, receiving an evaluation of that action, and updating its own estimate on
the “value” of taking that action in that state. Though effective, such an approach
is generally slow to converge, particularly in large and dynamic environments.

In this paper, we explore the concept of agents learning from actions they do
not take by estimating the rewards they would have received had they taken those
actions. These counterfactual rewards are estimated using the theory developed for
structural credit assignment, and prove effective in the congestion games. Further-
more, a team structure can be used to provide the required information for the
agents to compute these reward estimates [24, 29]. A key benefit of this approach
is that an increase in the number of agents can be leveraged to improve the esti-
mates of actions not taken, turning a potential pitfall (e.g. how to extract useful
information from the actions of so many agents) into an asset (e.g. learn from the
experiences of other agents). Though the concept of updating rewards for actions
not taken is present in learning automata literature, where for example, the prob-
ability of taking a particular action may go up down based on similar actions’
results [21, 38, 39], in this work we explicitly aim to quantify the counterfactual
concept of “what would my reward have been, had I taken another action.”

In Sec. 2, we discuss the congestion problem that we use in the reported exper-
iments. In Sec. 3, we summarize the basic agent learning architecture. In Sec. 4, we
provide the action-not-taken (ANT) rewards and modify them using team rewards.
We also provide experimental results showing the basic behavior of the ANT reward.
In Sec. 5, we explore the application of these rewards to dynamic domains where the
rapidly changing conditions put a premium on learning quickly. Finally, in Sec. 6,
we discuss the results and provide directions for future research.

2. Congestion Problems

Congestion problems where system performance depends on the number of agents
taking a particular action provide an interesting domain to study the behavior
of cooperative multiagent systems. In congestion problems, agents need to learn
how to synchronize (or not synchronize) their actions, rather than learn to take
particular actions. This type of problem is ubiquitous in routing domains (e.g. on



September 16, 2009 16:40 WSPC/169-ACS 00230

Learning from Actions Not Taken in Multiagent Systems 457

a highway, a particular lane is not preferable to any other lane, but what matters
is how many others are using a particular lane) [18, 34].

The multi-night bar problem is an abstraction of congestion games (and a
variant of the El Farol bar problem [5]) which have been extensively studied
[1, 5, 9, 7, 14]. In this version of the congestion problem, each agent has to determine
which day in the week to attend a bar. The problem is set up so that if either too
few agents attend (boring evening) or too many people attend (crowded evening),
the total enjoyment of the attending agents drop.

The system performance is quantified by a system reward function G. This
reward is a function of the full system state z (e.g. the joint action of all agents in
the system), and is given by:

G(z) =
n∑

day=1

xdaye
−xday

C , (1)

where n is the number of actions (for example n = 7 if actions are days); xday: the
total attendance on a particular day; and C: a real-valued parameter that represents
the capacity of the resource (e.g. the capacity of the bar).

What is interesting about this game is that selfish behavior by the agents tends
to lead the system to undesirable states. For example, if all agents predict an empty
bar, they will all attend (poor reward) or if they all predict a crowded bar, none
will attend (poor reward). This aspect of the bar problem is what makes this a
“congestion game” and an abstract model of many real-world problems ranging
from lane selection in traffic to job scheduling across servers to data routing.

3. Basic Agent Learning

The agent actions in this problem is to select a resource (day on which to attend
the bar). The learning algorithm for each agent is a simple reinforcement learner
(action value). Each agent keeps an n-dimensional vector providing its estimates of
the reward it would receive for taking each possible action. The system dynamics
are given by:

Initialize: week 0
Repeat until week > Max week

1. agents choose actions;
2. agents’ joint action leads to an overall system state;
3. the system state results in a system reward;
4. each agent receives a reward;
5. each agent updates its action selection procedure (i.e. learning);
6. week ← week+ 1.

In any week, an agent estimates its expected reward for attending a specific night
based on action values it has developed in previous weeks. At the beginning of each



September 16, 2009 16:40 WSPC/169-ACS 00230

458 K. Tumer and N. Khani

training run, each agent has an equal probability of choosing each action in the first
week, resulting in a uniformly random distribution across actions. At the beginning
of each training week, each agent picks a night to attend based on sampling this
probability vector using a Gibbs distribution. Each agent has n actions and a value
Vk associated with each action ak:

Pk =
e(Vk·τ)∑

agent e(Vk·τ)
, (2)

where τ is a temperature term that determines the amount of exploration (low
values of τ mean most actions have similar probabilities of being selected, whereas
high values of τ increase the probability that the best action will be selected).
Each agent receives reward R and updates the action value vector using a value
function Vk:

Vk = (1− α) · Vk + α · R. (3)

A reasonable option is to provide each agent with the full system reward for
each week. This leads to each agent receiving the reward given in Eq. (1), and
using that reward to update its value estimates for each action. However, this
reward is not particularly sensitive to an agent’s actions and especially in large
systems, leads to particularly slow learning. As a consequence, in this work, we use
the difference reward as a starting point for the reward an agent receives after each
step. Earlier work has shown that the difference reward significantly outperforms
both agents receiving a purely local reward and all agents receiving the same system
reward [3, 2, 33, 32, 36]. The difference reward is given by:

Di(z) = G(z)−G(z − zi), (4)

where z − zi specifies the state of the system without agent i.a In this instance z is
the full attendance profile of the agents, and z − zi is the attendance profile of all
the agents without agent i. Difference rewards are aligned with the system reward,
in that any action that improves the difference reward will also improve the system
reward. This is because the second term on the right-hand side of Eq. (4) does
not depend on agent i’s actions, meaning any impact agent i has on the difference
reward is through the first term (G) [32, 35]. Furthermore, it is more sensitive to
the actions of agent i, reflected in the second term of D, which removes the effects
of other agents (i.e. noise) from agent i’s reward function.

Intuitively, this causes the second term of the difference reward function to
evaluate the performance of the system without i, and therefore D measures the
agent’s contribution to the system reward directly. For the difference reward in the
congestion problem, this amounts to having each agent estimate the system reward
it would receive were it to take or not take a particular action. In this work, agents

aIn this paper, we will use zero padded vector addition and subtraction to specify the state
dependence on specific components of the system.



September 16, 2009 16:40 WSPC/169-ACS 00230

Learning from Actions Not Taken in Multiagent Systems 459

do not explicitly communicate with one another, and therefore, the only effect each
agent has on the system is to increase the attendance, xday, for night k by 1. This
leads to the following difference reward:

Di(z) = G(z)−G(z − zi)

= xdayi
e

−xdayi
C − (xdayi

− 1)e
−(xdayi

−1)

C , (5)

where xdayi
is the total attendance on the day selected by agent i.

4. Action-Not-Taken (ANT) Rewards

Though the difference reward given in Eq. (5), provides a reward tuned to an agent’s
actions, it is still based on an agent sampling each of its actions a (potentially large)
number of times. In this work, in order to increase the learning speed, we introduce
the concept of ANT rewards.17 The goal with ANT rewards is to provide estimates
of how the system would have turned out had an agent taken a particular action.
The mathematics that allow the computation of the difference reward can be used
to compute this type of reward.

In this paper, rather than have a separate results section, we provide experimen-
tal results directly alongside the reward descriptions to motivate the improvements
to the rewards and the derivation of new rewards. All results are based on 20 inde-
pendent runs with the standard error plotted when large enough to be relevant.
Unless otherwise specified (as with the scaling runs or congestion dependent runs)
the number of agents in the system was set to 120, with C = 6 (capacity), and
n = 5 (number of actions, or days).

4.1. Basic action-not-taken reward

The direct application of this concept is to have agents update their reward esti-
mate based on the reward they would have received had they taken other actions.
Therefore, at each time step, agents perform a mathematical operation that sim-
ulates their taking a different action and compute the counterfactual reward that
would have resulted from that action. For an agent i who selected action a at this
step, the counterfactual reward for action b is given by:

Di→b(z) = G(z − za
i + zb

i )−G(z − za
i ), (6)

where Di→b is the reward for agent i taking action b; za
i is the state component

where agent i has taken action a; zb
i is the state component where agent i has taken

action b.
The second term of Eq. (6) (G(z−za

i )) is the same as the second term of Eq. (4).
Namely the reward for the state where agent i has not taken the particular action
that it took. The first term though is the key to the ANT reward. In this case,
we compute the reward that would have resulted had agent i taken action b rather
than action a.



September 16, 2009 16:40 WSPC/169-ACS 00230

460 K. Tumer and N. Khani

Utilizing this structure, Di
ANT can then be formulated as shown in Eq. (7):

Di
ANT =

{
G(z)−G(z − za

i ), for i→ a,

G(z − za
i + zb

i )−G(z − za
i ), for i→ b �= a,

(7)

where i→ a means that agent i has taken action a. Note, the removal of the state in
which agent i has taken action a in the second term represents the system state
without agent i. Because agent i had taken action a, this removal results in a state
where agent i has taken neither action a nor action b (which it has never taken).
Hence the second term is the same for both conditions of Eq. (7).

Figure 1 shows the learning curves for D and DANT along with results where
agents directly use the system reward G and a local reward L to learn. The local
reward L is based on the agents simply receiving the reward for the action they
took, which in this instance is the component of Eq. (1) corresponding to the day

they attended the bar (L = xdaye
−xday

C ). This is a “selfish” reward, in that the agent
is only concerned with the day on which it decided to attend. Though yielding poor
results in this case, this is the naive decomposition of G to its components [45].

In all the experiments, the system performance is measured with respect to G,
regardless of how the agents were trained. As previously noted, these results confirm
that agents using D significantly outperform agents using G or L in this domain. G

learns little, and L learns to do the wrong thing: Because the agent rewards are not
aligned, agents aiming to maximize their own reward lead to poor system states.
We include the results for agents using G and L here for completeness, but we will
omit them in subsequent figures.

Fig. 1. System performance versus training weeks. In comparison to D, DANT based on actions
not taken learns faster but shows a lower and noisier performance.



September 16, 2009 16:40 WSPC/169-ACS 00230

Learning from Actions Not Taken in Multiagent Systems 461

The results here show that although DANT learns faster than D, it struggles
to reach good solutions. This shows that the ANT reward has a difficult time
estimating the reward for most actions once those actions have been sampled. Even
though the agents take advantage of such rewards and learn faster in the first weeks
of training, there is a time after which these additional rewards become detrimental
to the learning process. This suggests two possible solutions, which we explore in
the next two sections:

(1) Use the ANT reward early in the process, but stop and switch to basic D after
a “stop week.”

(2) Select only a subset of the actions to receive the ANT reward.

4.2. ANT reward with early stopping

First, let us consider the early stopping concept to mitigate the noisy feedback
agents receive for their actions. This modification is based on the observation that
the ANT rewards are better than random rewards, but not as good as rewards
that have been updated by actually taking the actions. Figure 2 shows the impact
of having agents use ANT rewards for the first 6 weeks and then switch back to
using D (the impact of when to stop is discussed in Fig. 3). Results show that this
approach significantly speeds up the learning process, though does not result in
agents reaching higher performance.

Figure 3 shows the dependence of the system performance on the length of time
the ANT reward is used. The learning speed is stable for small values of the stop
week, but starts to drop slowly as the actions not taken are used more extensively.
There is a steady rightward shift as the stop week moves from 6 to 100, at which

Fig. 2. System performance when actions not taken are stopped after week 6. DANT-ES (ANT
with Early Stopping) learns faster and reaches the same system rewards as D.



September 16, 2009 16:40 WSPC/169-ACS 00230

462 K. Tumer and N. Khani

Fig. 3. The impact of the stop week on system performance. The learning speed is directly related
to the length of time the action-not-taken reward is used.

point, the system learns more slowly than D alone. Providing a mechanism for
selecting the stop week based on either a preset number of ANT rewards, or given
performance criteria would provide automation, though in this work, we simply
base the stop week on trial and error based on Fig. 3.

4.3. ANT reward with teams

The second option we consider is to limit the actions that are updated based on
counterfactual rewards to reliable actions sampled by a subset of agents. To that
end, we introduce the concept of a team, and denote agent i’s team members by
Ti. In this context, Ti is a fixed, randomly selected subset of the agents. This
formulation gives:

Di
ANT-L =




G(z)−G(z − za
i ), for i→ a,

G(z − za
i + zb

i )−G(z − za
i ), for i→ b ∈ Ti,

0, otherwise,
(8)

where i → b ∈ Ti means agent i selects actions b that are sampled by agent’s i’s
teammates Ti. As previously, the removal of agent i in the second term represents
the system state without agent i having taken either action a (which it had taken)
or action b (which it had not taken), leading to the term being the same in both
cases.

Figure 4 shows the results when an agent has 12 randomly selected team mem-
bers (in this case there are 120 total agents, so the team sizes are 10% of the total
agents). Other than at the extremes (e.g. team size of 2 or 110), the experiments
were not particularly sensitive to this parameter. By limiting the number of actions
that are updated (DANT-L in black/dark), the variability of the reward is reduced as



September 16, 2009 16:40 WSPC/169-ACS 00230

Learning from Actions Not Taken in Multiagent Systems 463

Fig. 4. System performance when only a subset of actions are explored by an agent (120 total
agents, team size of 12). D performs well. DANT-L based on a limited number of actions not taken
performs similarly as DANT but shows a response with a lower noise level.

compared to the full DANT (in green/light), but there is no discernible improvement
in the quality of the solution. However, from a computational and communication
perspective, this is an interesting result, which points to a significant reduction in
the need for counterfactual reward computation without loss of convergence speed.

We now combine the two concepts and have agents use teams and early stopping.
Furthermore, instead of using the team members as information sources only, we
increase the connection among team members by providing them all with the same
reward. That is, all team members attending a particular day will receive the same
reward. The learning strategy is to use team information only during the first weeks
(three in the reported results, but the performance is similar for minor changes to
this parameter) of learning and switch to the regular difference reward [Eq. (5)] for
the rest of the training period.

The key aspect of this approach is that the team members measure the impact
of a team not taking a particular action, rather than an individual agent. As a
result, agents learn with their team in a smaller state space defined by the world
minus their team space instead of the entire world. This is conceptually similar to
the reward described in Eq. (8) but where the impact of the whole team, rather
than agent i is removed, leading to:

Di
Team =




G(z)−G(z − za
Ti

), for Ti → a,

G(z − za
i + zb

j)−G(z − zb
Ti
− za

i ), for i→ b ∈ T i,

0, otherwise,
(9)

where za
Ti

is the state component of team members of agent i taking action a. In
this formulation, the impact of all of agent’s i teammates are removed before the



September 16, 2009 16:40 WSPC/169-ACS 00230

464 K. Tumer and N. Khani

reward is calculated. Note in this case, unlike in Eqs. (7) and (8), the second term
is different for the two actions. This is because this term estimates the impact of
removing all team members of i that had taken a particular action. When agent i

changes its action, this also changes the team members taking the same action as i.
For the action a selected by agent i, we only need to remove all its team members
who took that action. But to find the counterfactual reward for action b, we need
to remove the actual action of agent i (action a) and then remove the team mem-
bers who had taken action b. Though conceptually similar to previous rewards, the
presence of team members leads to this subtle difference in the computation of the
team ANT reward.

Now, let us explicitly compute Di
Team for the congestion problem considered in

this paper. First, for the action taken by agent i [first line of Eq. (9)], the reward
becomes:

Di→a
Team = G(z)−G(z − za

Ti
)

=
∑
day

xdaye
−xday

C −

 ∑

day �=dayi

xdaye
−xday

C

+ (xdayi
− |T i

dayi
|)e

−(xdayi
−|T i

dayi
|)

C


 , (10)

where z−za
Ti

is the state component in which agent i and its teammate taking action
a have no effect; dayi is the day agent i selects to attend; xdayi

is the attendance on
the day agent i selects to attend; and |T i

dayi
| is the number of agent i’s teammates

that choose dayi to attend.
Second, let us focus on the actions not taken by agent i [second line of Eq. (9)].

This is the reward agent i would have received had it taken the actions b chosen by
some of its teammates, leading to:

Di→b
Team = G(z − za

i + zb
i )−G(z − zb

Ti
− za

i )

=
day∑

day �=dayi→a,b

xdaye
−xday

C + (xdayi→a
− 1)e

−(xdayi→a
−1)

C

+ (xdayi→b
+ 1)e

−(xdayi→b
+1)

C

−

 ∑

day �=dayi→a,b

xdaye
−xday

C + (xdayi→a
− 1)e

−(xdayi→a
−1)

C

+ (xdayi→b
− |T i

dayi→b
|) · e

−(xdayi→b
−|T i

dayi→b
|)

C




= (xdayi→b
+ 1)e

−(xdayi→b
+1)

C + (xdayi→b
− |T i

dayi→b
|) · e

−(xdayi→b
−|T i

dayi→b
|)

C

(11)



September 16, 2009 16:40 WSPC/169-ACS 00230

Learning from Actions Not Taken in Multiagent Systems 465

where z−za
i +zb

i is the state component in which agent i takes action b rather than
action a; z−zb

Ti
−za

i is the state component on which agent i (taking action a) and
its teammates taking action b are removed from the state; xi→b is the attendance
resulting from agent i taking action b; |T i

dayi→b
| is the number of agent i’s teammates

that choose to attend on day resulting from action b.
In this formulation, if the agent i’s team members have taken all the possible

actions, each action that agent i had not taken will still be updated. Otherwise,
only actions taken by i’s teammates will be available for reward information and
therefore updated.

Figure 5 shows the learning curves for D , DANT-ES and DTEAM. Agents using
DTEAM not only learn faster, but also reach higher system rewards than agents using
the baseline D or previous variants of DANT. In this instance, not only information
from team members was used, but also the reward of each team member was the
same, resulting in a larger “block” of agents receiving a reward, and removing a
significant amount of noise from the rewards.

4.4. ANT reward with weighted teams

The use of team rewards provided tangible benefits, though it treated all informa-
tion received from team members equally. Yet, one can consider that the more team
members take a particular action, the more reliable the estimate for the reward of

Fig. 5. System performance versus training weeks. D performs well, but DTeam based on updating
only actions that were taken by team members both learns faster and reaches higher system
rewards than D or DANT-ES.



September 16, 2009 16:40 WSPC/169-ACS 00230

466 K. Tumer and N. Khani

that action would become. This becomes particularly relevant when the congestion
in the system increases.

A simple solution to this problem is to use a weighting factor for the second term
of the counterfactual reward function. In this work, we use the average number of
team members selecting particular actions, though more sophisticated methods can
also be used. This leads to modifying Eq. (9), that for agent i and action b leads to
a weighted team reward DWT:

Di→b
WT = G(z − za

i + zb
i )− µ|T i

dayi→b
| ·G(z − zb

Ti
− za

i ), (12)

where µ|T i
dayi→b

| is the average number of team members taking action b.
Figure 6 explores this idea for 460 agents in a system with seven actions and a

capacity of 4. Because the optimal capacity in this case is 7× 4 = 28, this creates
significant congestion. The results show that traditional D starts to suffer in this
case, and that the weighted DWT outperforms DTEAM. Figure 7 shows the impact
of congestion directly as the number of agents in the system increases from 120 to
460. DWT handles the increased congestion better than either DTEAM or D.

5. Tracking Dynamic Environments

One of the key advantages to learning rapidly is the ability to adapt to dynamic
environments where the conditions may change faster than a traditional learner can
adapt. In this section, we test the performance of the ANT rewards with weighted
team reward on two types of dynamic environments. First, we explore seemingly

Fig. 6. System performance for the weighted team rewards. There are 460 agents in the system
with only seven actions of capacity 4 leading to significant congestion. The performance of DWT

is significantly higher than either the base D or DTEAM.



September 16, 2009 16:40 WSPC/169-ACS 00230

Learning from Actions Not Taken in Multiagent Systems 467

Fig. 7. The impact of congestion on system performance for the weighted team rewards. The
number of agents increases, but the capacity of each day stays the same (C = 4). The performances
of both DTEAM and DWT are significantly higher than D, and DWT handles the congestion the
best.

random changes in agent numbers and capacities, and then we explore faster, but
periodic changes of both types.

5.1. Unpredictable changes to the environment

In this section, we explore the ability of DWT to adjust to unexpected changes in
the system. Figure 8 shows the system response to changes in the number of agents.
In this case, the number of agents changed every 40 weeks from 280, to 140, to 180,
to 100. DWT not only recovers rapidly, but also learns to exploit the new condition,
as demonstrated at week 120: after the initial drop caused by the change, agents
using D return to their previous state, but agents using DWT reach a higher system
reward value.

Figure 9 shows the system response to the capacity changing from 3 to 7 every
70 weeks. DWT learns faster early on and reaches slightly higher performance, but
this experiment shows that D can track slow changes in the environment.

5.2. Periodic changes to the environment

In this section, we explore periodic and rapid changes to the environment. Figure 10
explores the performance of DWT versus difference reward D when the number of
agents is changing rapidly. Unlike in the results of the previous section (Fig. 8),
D has a hard time tracking these changes. DWT on the other hand converges to
a good solution despite the number of agents in the system changing the optimal
solutions for each agent. (For this experiment, we modified the value update func-
tion to account for the periodicity of the system, and allowed the value update to



September 16, 2009 16:40 WSPC/169-ACS 00230

468 K. Tumer and N. Khani

Fig. 8. System performance when the number of agents in the system changed from 280, 140,
180, 100 each 40 time steps, for seven actions and a capacity of 4. DWT outperforms D both in
response time and final solution quality.

Fig. 9. System performance when the capacity of the system changes from 3 to 7 and back every
70 time steps for four actions and 120 agents.

be: Vk = (1− α) · (τ · V t−1
k + (1− τ) · V t′

k ) + α ·R where t′ corresponds to the last
time in which the capacity was the same. This value can be estimated in practice,
though in this instance, in order to remove the impact of such estimation on the
reward analysis, we provided it to both reward functions.)

Finally, we explore the impact of rapid changes to the system capacity. Figure 11
shows the system performance when the capacity oscillates between 2 and 5. Unlike



September 16, 2009 16:40 WSPC/169-ACS 00230

Learning from Actions Not Taken in Multiagent Systems 469

Fig. 10. System performance versus training weeks. There were eight actions with a capacity of
5. The standard difference reward D is plotted DWT with variations of 60–120 in the number of
agents. D cannot converge to a good solution, but DWT not only converges to a good solution

but does so rapidly after each capacity change.

Fig. 11. System performance when the number of agents changes periodically. There were eight
actions and 120 agents and capacity changed from 2 to 5 every 50 weeks. D performs poorly, but
DWT learns faster and reaches higher system rewards than D for both capacities.



September 16, 2009 16:40 WSPC/169-ACS 00230

470 K. Tumer and N. Khani

in Fig. 9, D cannot track this continuous change as it does not get sufficient time
to learn the system before the environment changes. DWT, however, tracks the
changes. Even though it has difficulties with the rapid changes, it both reaches
higher system level performance for both C = 2 and C = 5.

6. Discussion

In large multiagent systems, the agents face a difficult learning problem where
their actions are filtered through the “group action” before leading to a reward.
As a consequence, an agent has a lengthy learning period where the actions need
to be sampled a large number of times to extract the “signal” from the “noise.”
The use of the difference reward provides an improvement over directly using the
system reward. However, a standard difference reward function still relies on each
action being sampled before the cleaned up reward can be obtained. In this work,
we present a modification to previously used difference reward, called ANT reward
that provides agents with rewards on actions that were not taken by the agent.

We then provide modified versions of the ANT reward that through early stop-
ping and team structures provides improvements in both the learning speed and
the quality of the solution reached. The increase in speed of learning is the direct
result of an agent receiving a counterfactual reward that estimates the reward that
agent would have received had it taken a particular action. Furthermore, we show
that the performance improvements are significantly more pronounced in dynamic
environments where the conditions change either randomly or with high periodic-
ity. In both cases, the rapid learning allows the agents to track a highly dynamic
environment.

Though these results are encouraging, there are multiple areas for further inves-
tigation in this domain. First, the communication and observation requirements of
the agents can be explicitly explored and connected to the system performance.
Second, having agents adopt particular roles within a team can potentially provide
further improvements in the learning speed. Finally, modifying the way in which
agents estimate their ANT rewards can lead to substantial computational gains in
addition to the already achieved speed up in the number of iterations required for
convergence. We are currently investigating all three extensions of this work.

Acknowledgments

The authors would like to thank Matt Knudson for his insightful comments as well
as his help with the preparation of this paper. This work was partially supported
by AFOSR grant number FA9550-08-1-0187.

References

[1] Agogino, A. K. and Tumer, K., Handling communication restrictions and team for-
mation in congestion games, J. Auton. Agents Multi Agent Syst. 13 (2006) 97–115.



September 16, 2009 16:40 WSPC/169-ACS 00230

Learning from Actions Not Taken in Multiagent Systems 471

[2] Agogino, A. K. and Tumer, K., Analyzing and visualizing multiagent rewards in
dynamic and stochastic environments, J. Auton. Agents Multi Agent Syst. 17 (2008)
320–338.

[3] Agogino, A. K. and Tumer, K., Efficient evaluation functions for evolving coordina-
tion, Evol. Comput. 16 (2008) 257–288.

[4] Arai, S., Sycara, K. and Payne, T., Multi-agent reinforcement learning for planning
and scheduling multiple goals, in Proc. Fourth Int. Conf. on Multiagent Syst. (2000),
pp. 359–360.

[5] Arthur, W. B., Complexity in economic theory: Inductive reasoning and bounded
rationality, Am. Econ. Rev. 84 (1994) 406–411.

[6] Chalkiadakis, G. and Boutilier, C., Coordination in multiagent reinforcement learn-
ing: A bayesian approach, in Proc. Second Int. Joint Conf. on Autonomous Agents
and Multiagent Systems (AAMAS-03) (Melbourne, Australia, 2003).

[7] Challet, D. and Zhang, Y. C., On the minority game: Analytical and numerical
studies, Physica A 256 (1998) 514.

[8] Claus, C. and Boutilier, C., The dynamics of reinforcement learning cooperative mul-
tiagent systems, in Proc. Fifteenth National Conf. on Artificial Intelligence (Madison,
WI, 1998), pp. 746–752.

[9] de Cara, M. A. R., Pla, O. and Guinea, F., Competition, efficiency and collective
behavior in the “El Farol” bar model, Eur. Phys. J. B 10 (1999) 187.

[10] Dietterich, T. G., Hierarchical reinforcement learning with the MAXQ value function
decomposition, J. Artif. Intell. 13 (2000) 227–303.

[11] Guestrin, C., Lagoudakis, M. and Parr, R., Coordinated reinforcement learning, in
Proc. 19th Int. Conf. on Machine Learning (2002).

[12] Hu, J. and Wellman, M. P., Multiagent reinforcement learning: Theoretical framework
and an algorithm, in Proc. Fifteenth Int. Conf. on Machine Learning (1998), pp. 242–
250.

[13] Hu, J. and Wellman, M. P., Online learning about other agents in a dynamic multia-
gent system, in Proc. Second Int. Conf. on Autonomous Agents (1998), pp. 239–246.

[14] Jefferies, P., Hart, M. L. and Johnson, N. F., Deterministic dynamics in the minority
game, Phys. Rev. E 65(016105) (2002).

[15] Jennings, N. R., Sycara, K. and Wooldridge, M., A roadmap of agent research and
development, Auton. Agents Multi-Agent Syst. 1 (1998) 7–38.

[16] Kaelbling, L. P., Littman, M. L. and Moore, A. W., Reinforcement learning: A survey,
J. Artif. Intell. Res. 4 (1996) 237–285.

[17] Khani, N. and Tumer, K., Fast multiagent learning: Cashing in on team knowledge,
in Artificial Neural Networks in Engineering (ASME, St. Louis, 2008), pp. 3–10.

[18] Klügl, F., Bazzan, A. and Ossowski, S. (eds.), Applications of Agent Technology in
Traffic and Transportation (Springer, 2005).

[19] Mataric, M. J., Coordination and learning in multi-robot systems, in IEEE Intelligent
Systems (1998), pp. 6–8.

[20] McGlohon, M. and Sen, S., Learning to cooperate in multi-agent systems by combin-
ing Q-learning and evolutionary strategy, Int. J. Lateral Comput. 1 (2005) 58–64.

[21] Narendra, K. S. and Thathachar, M. A. L., Learning Automata: An Introduction
(Prentice Hall, 1989).

[22] Panait, L., Tuyls, K. and Luke, S., Theoretical advantages of lenient learners: An
evolutionary game theoretic perspective, J. Mach. Learn. Res. 9 (2008) 423–457.

[23] Parkes, D., On learnable mechanism design, in Collectives and the Design of Complex
Systems (Springer, 2004).



September 16, 2009 16:40 WSPC/169-ACS 00230

472 K. Tumer and N. Khani

[24] Pynadath, D. and Tambe, M., The communicative multiagent team decision prob-
lem: Analyzing teamwork theories and models, J. Artif. Intell. Res. 16 (2002)
389–423.

[25] Sherstov, A. and Stone, P., Three automated stock-trading agents: A comparative
study, in Agent Mediated Electronic Commerce VI: Theories for and Engineering
of Distributed Mechanisms and Systems (AMEC 2004), Lecture Notes in Artificial
Intelligence (Springer Verlag, Berlin, 2005), pp. 173–187.

[26] Stone, P., Layered Learning in Multi-Agent Systems: A Winning Approach to Robotic
Soccer (MIT Press, Cambridge, MA, 2000).

[27] Stone, P., Sutton, R. S. and Kuhlmann, G., Reinforcement learning for RoboCup-
soccer keepaway, Adapt. Behav. (2005).

[28] Sutton, R. S. and Barto, A. G., Reinforcement Learning: An Introduction (MIT Press,
Cambridge, MA, 1998).

[29] Tambe, M., Towards flexible teamwork, J. Artif. Intell. Res. 7 (1997) 83–124.
[30] Taylor, M. E., Whiteson, S. and Stone, P., Comparing evolutionary and temporal

difference methods for reinforcement learning, in Proc. Genetic and Evolutionary
Computation Conf. (Seattle, WA, 2006), pp. 1321–1328.

[31] Tesauro, G., Practical issues in temporal difference learning, in Advances in Neural
Information Processing Systems, Vol. 4, eds. Moody, J., Hanson, S. and Lippmann,
R. (Morgan Kaufmann, 1992), pp. 259–266.

[32] Tumer, K. and Agogino, A., Distributed agent-based air traffic flow management,
in Proc. Sixth Int. Joint Conf. on Autonomous Agents and Multi-Agent Systems
(Honolulu, HI, 2007), pp. 330–337.

[33] Tumer, K., Agogino, A. and Wolpert, D., Learning sequences of actions in collectives
of autonomous agents, in Proc. First Int. Joint Conf. on Autonomous Agents and
Multi-Agent Systems (Bologna, Italy, 2002), pp. 378–385.

[34] Tumer, K., Welch, Z. T. and Agogino, A., Aligning social welfare and agent prefer-
ences to alleviate traffic congestion, in Proc. Seventh Int. Joint Conf. on Autonomous
Agents and Multi-Agent Systems (Estoril, Portugal, 2008).

[35] Tumer, K. and Wolpert, D. (eds.), Collectives and the Design of Complex Systems
(Springer, New York, 2004).

[36] Tumer, K. and Wolpert, D. H., Collective intelligence and Braess’ paradox, in Proc.
Seventeenth National Conf. on Artificial Intelligence (Austin, TX, 2000), pp. 104–
109.

[37] Tuyls, K. and Parsons, S., What evolutionary game theory tells us about multiagent
learning, Artif. Intell. 171 (2007) 406–416.

[38] Verbeeck, K., Nowe, A. and Tuyls, K., Coordinated exploration in multi-agent rein-
forcement learning: An application to load balancing, in Proc. Fourth Int. Joint
Conf. on Autonomous Agents and Multi-Agent Systems (Utrecht, The Netherlands,
2005).

[39] Verbeeck, K., Peeters, M., Nowe, A. and Tuyls, K., Reinforcement learning in stochas-
tic single and multi-stage games, in Adaptive Agents and Multi-Agent Systems II,
Lecture Notes in Artificial Intelligence (Springer Verlag, Berlin, 2005), pp. 275–294.

[40] Vidal, J. M., Multiagent coordination using a distributed combinatorial auction, in
AAAI Workshop on Auction Mechanism for Robot Coordination (2006).

[41] Vidal, J. M. and Durfee, E. H., The moving target function problem in multi-agent
learning, in Proc. Third Int. Conf. on Multi-Agent Systems (AAAI/MIT press, 1998),
pp. 317–324.

[42] Watkins, C. and Dayan, P., Q-learning, Mach. Learn. 8 (1992) 279–292.



September 16, 2009 16:40 WSPC/169-ACS 00230

Learning from Actions Not Taken in Multiagent Systems 473

[43] Wellman, M. P., Cheng, S.-F., Reeves, D. M. and Lochne, K. M., Trading agents
competing: Performance, progress, and market effectiveness, IEEE Intell. Syst. 18
(2003) 48–53.

[44] Whiteson, S., Taylor, M. E. and Stone, P., Empirical studies in action selection for
reinforcement learning, Adapt. Behav. 15 (2007).

[45] Wolpert, D. H. and Tumer, K., Optimal reward functions for members of collectives,
Adv. Complex Syst. 4 (2001) 265–279.



September 16, 2009 16:40 WSPC/169-ACS 00229

Advances in Complex Systems, Vol. 12, Nos. 4 & 5 (2009) 475–492
c© World Scientific Publishing Company

MULTIAGENT LEARNING FOR BLACK BOX SYSTEM
REWARD FUNCTIONS

KAGAN TUMER

Oregon State University, 204 Rogers Hall,
Corvallis, Oregon 97331, USA
kagan.tumer@oregonstate.edu

ADRIAN AGOGINO

UCSC, NASA Ames Research Center, Mailstop 269-3,
Moffett Field, California 94035, USA

adrian@email.arc.nasa.gov

Received 31 January 2009
Revised 22 May 2009

In large, distributed systems composed of adaptive and interactive components (agents),
ensuring the coordination among the agents so that the system achieves certain perfor-
mance objectives is a challenging proposition. The key difficulty to overcome in such
systems is one of credit assignment: How to apportion credit (or blame) to a particu-
lar agent based on the performance of the entire system. In this paper, we show how
this problem can be solved in general for a large class of reward functions whose ana-
lytical form may be unknown (hence “black box” reward). This method combines the
salient features of global solutions (e.g. “team games”) which are broadly applicable but
provide poor solutions in large problems with those of local solutions (e.g. “difference
rewards”) which learn quickly, but can be computationally burdensome. We introduce
two estimates for local rewards for a class of problems where the mapping from the
agent actions to system reward functions can be decomposed into a linear combination
of nonlinear functions of the agents’ actions. We test our method’s performance on a
distributed marketing problem and an air traffic flow management problem and show a
44% performance improvement over team games and a speedup of order n for difference
rewards (for an n agent system).

Keywords: Multiagent learning; black box reward functions; multiagent coordination.

1. Introduction

The ability of a team of agents to learn distributed policies has been demonstrated
successfully in numerous domains such as controlling multiple robots, aggregating
information from distributed data sources, and distributed system administra-
tion [11, 14, 17, 27, 30]. While diverse, each of these domains share two important
properties fundamental to interesting distributed learning problems: (1) each agent
learns its own set of actions (policy), (2) each policy is trying to maximize a system
reward that is a nonlinear function of all the policies, thus coupling the policies

475



September 16, 2009 16:40 WSPC/169-ACS 00229

476 K. Tumer and A. Agogino

together. This type of problem is best described as a multiagent learning problem,
where each agent, i, takes an action zi and tries to maximize a reward function,
G(z), that is a function of z, the actions of all the agents [35, 33, 39, 36].

When the agent actions need to be coordinated, this issue becomes particularly
challenging due to the structural credit assignment problem [1, 22, 37, 38]. In this
problem, credit must be assigned to a particular agent based on the performance
of the full system. For example, when an agent takes an action and G improves,
the agent needs to determine whether its action was (partly) responsible for that
improvement. Though lengthy learning trails can statistically eliminate the impact
of other agents on G, such an approach is not practical for large systems. If G is
linearly separable in the agents’ actions, this credit assignment problem is trivial as
each agent can maximize its own separate component of that reward. In contrast,
if G depends on all the agents’ actions directly, such as the parity problem, finding
an adequate distributed solution is nearly impossible, and the problem needs to
be reformulated. In this paper, we focus on problems where moderate numbers
of agents need to coordinate their actions with one another to reach satisfactory
values of G.

For systems with few agents, this credit assignment problem can be sidestepped,
and all agents can use G directly. However, when the number of agents in a system
increase, this method breaks down and agents need to receive a reward that accounts
for their contribution to the system. The “difference reward” provides such a reward,
and has produced good results in many domains [5, 31, 33, 34]. However, as currently
expressed, the difference reward requires knowledge of the functional form of the
system reward.

In this paper, we present an approach that lifts this requirement using two
estimates of the difference reward that retains its fast learning characteristics, but
does not require full knowledge of the functional form of G(z) . In Sec. 2, we briefly
describe the related work. Section 3 describes the system reward structure and the
basic difference used in multiagent learning. Section 4 derives two estimates for
the difference reward that allows its application to domains with G of unknown
functional form. Section 5 presents experimental results in both distributed mar-
keting problem, and a complex air traffic flow problem. Section 6 discusses the
mathematical implications and the future applications of the estimated difference
rewards.

2. Related Work

In general, work in multiagent learning can be grouped into one of two broad cat-
egories: (i) work leveraging domain knowledge; and (ii) general work applicable to
a subset of the domains. Some of the most successful work in multiagent learning
fall into the first category. In robotic soccer for example, player specific subtasks,
followed by tiling provide good convergence properties [27]. In foraging robot coor-
dination, specific rules induce good division of labor [19]. In a distributed air traffic



September 16, 2009 16:40 WSPC/169-ACS 00229

Multiagent Learning for Black Box System Reward Functions 477

control domain, a combination of positive rewards and penalty rewards allows a
collection of aircrafts to navigate safely [15]. In all cases, the agent coordination is
achieved through exploiting knowledge of the system dynamics and accentuating
the known desirable interactions among the agents.

The second set of approaches provide general solutions to a subset of the prob-
lems. Early work on this topic focused on “team games” where each agent considers
itself the only agent in the system and receives the full system reward. An exam-
ple of this approach is the control of four elevators where a separate reinforcement
learner was used to control each elevator, and each learner received the full system
reward [10]. While such a “team game” approach is effective, it is restricted to
domains with a small number of agents. In problems where groups of agents can
be assumed to be independent, the task can be decomposed by learning a set of
basis functions used to represent the value function, where each basis only pro-
cesses a small number of the state variables [14]. Task decomposition has also been
used in single agent RL using hierarchical reinforcement learning methods such as
MAXQ value function decomposition [12]. In multiagent learning, Partially Observ-
able Markov Decision Processes (POMDPs) can be simplified through piecewise
linear rewards [24]. In other cases, agents can be assumed to be locally connected
through a graph and can learn efficiently through local rewards [6]. Outside of rein-
forcement learning, mechanism design has been used with MDPs to address the
issue of creating good agent incentives for specific types of rewards [25].

3. Agent and System Rewards

As stated in the introduction, in this paper we present a method to estimate dif-
ference rewards that does not require full knowledge of the functional form of the
system reward G.

3.1. System reward

In particular, we focus our study to the class of problems where system reward is
in the form:

G(z) = Gf (f(z)) = Gf

(∑
i

fi(zi)

)
, (1)

where Gf is a known nonlinear function and the fis are unknown nonlinear func-
tions. Table 1 summarizes the functional form of G and its arguments.

Table 1. Functional forms for system objective function.

Function Form Argument

G Unknown Nonlinear z
Gf Known Nonlinear f
f Known Linear fi

fi Unknown Nonlinear zi



September 16, 2009 16:40 WSPC/169-ACS 00229

478 K. Tumer and A. Agogino

The key assumption in this work is that the fi cannot be sampled from the
domain, but that

∑
i fi can be sampled (potentially at a high cost). This form

of G(z) applies to a large number of domains where agents have an unknown
effect on their environment (fi) and these effects are aggregated together. Such
domains include air (or highway) traffic flow management, distributed gating, and
distributed information gathering. While the agents do not know the fis they do
know how these aggregated effects contribute to the system goal in the form of
Gf . Our estimate exploits this structure of G to create local rewards that allow
learning to proceed significantly faster than directly using G and be applied to sys-
tems where the agent-specific rewards cannot be applied because the form of G is
unknown.

3.2. Difference reward

In a multiagent setting, while each agent can try to maximize the system reward
directly, such an approach leads to slow/poor learning due to the structural credit
assignment problem. An alternative is to have each agent attempt to maximize
an agent-specific reward function derived in such a way that if agents succeed
in maximizing that reward function, they collectively also maximize G. One such
reward function is the difference reward function of the form [33]:

Di ≡ G(z)−G(z − zi + ci), (2)

where zi is the action of agent i, and ci is an arbitrary “action” that does not
depend on agent i’s actions.a In the second term of Di, z − zi + ci represents the
“counterfactual” states where the action of agent i, zi, is replaced by a fixed action
ci that is independent of the agent’s action.

There are two advantages in using D: First, the second term, G(z − zi + ci),
differs from the first term, G(z), only in the actions of agent i. If agent i’s action
is not tightly coupled to the actions of the other agents, then the second term will
subtract out much of the impact of the actions of the other agents in the system,
therefore providing an agent with a “cleaner” signal than G. For instance if all
the other agents choose poor actions, the impact of these actions would appear
in both terms of Di, and would mostly cancel out. This benefit has been dubbed
“learnability” (agents have an easier time learning) in previous work [33]. Second,
because the second term does not depend on the actions of agent i, any action
taken by agent i that improves D, also improves G. Therefore, we expect policies
that maximize D will also maximize G. This specific form of difference reward has
been effective in a number of domains including congestion problems, multi-rover
policy evolution, and bin-packing [2, 30, 33].

aThis notation uses zero padding and vector addition rather than concatenation to form full state

vectors from partial state vectors.



September 16, 2009 16:40 WSPC/169-ACS 00229

Multiagent Learning for Black Box System Reward Functions 479

As an example, consider the application of this reward to a multi-robot coordina-
tion problem where multiple robots need to gather importance weighted information
and maximize the total information collected by all the robots [5, 30]. In such a
case, selecting a ci that removes the robots’ observations from the system, the dif-
ference reward measures the contribution of that robot to the system. Note, this
is not equivalent to having each robot simply maximize the information it collects
(which leads to poor system behavior) [5]. Instead, the difference reward leads to
robots exploring areas that would not have been explored by other robots. That is,
if a second robot would have observed a particular area, then the difference reward
provides low values, urging the robot to find information with more value to the
full system [5].

4. Estimates of Difference Rewards

Though providing a good compromise between aiming for system performance and
removing the impact of other agents from an agent’s reward, one issue that may
plague D is computational cost. Because it relies on the computation of the coun-
terfactual term G(z − zi + ci) (i.e. the system performance without agent i) it may
be difficult or impossible to compute, particularly when the exact mathematical
form of G is not known.

For reward functions that are of the form given in Eq. (1) and summarized in
Table 1, however, we can derive estimates for D that overcome this limitation. Our
premise is that we can sample values from f(z), enabling us to compute G, but that
we cannot sample from each fi(zi). In addition, we assume we may not be able to
even compute f(z) directly and must sample it from a “black box” computation
(e.g. a system simulator) or measure it from the environment.

4.1. First estimate

The key element in the computation of the difference reward is the counterfactual
G(z − zi + ci):

G(z − zi + ci) = Gf (f(z − zi + ci))

= Gf


∑

j �=i

fj(zj) + fi(ci)




= Gf (f(z)− fi(zi) + fi(ci)). (3)

Unfortunately, we cannot compute this directly as the values of fi(zi) are unknown.
However, if agents take actions independently (i.e. they do not observe how other
agents act before taking their own actions) we can take advantage of the linear form
of f(z) in the fis with the following equality:

E(f−i(z−i) | zi) = E(f−i(z−i) | ci), (4)



September 16, 2009 16:40 WSPC/169-ACS 00229

480 K. Tumer and A. Agogino

where E(f−i(z−i) | zi) is the expected value of fj �=i (all fs other than fi) given the
value of zi and E(f−i(z−i) | ci) is the expected value of fj �=i given ci. We then get
the following estimate for f(z − zi + ci):

f(z − zi + ci) = f(z)− fi(zi) + fi(ci)

= f(z)− fi(zi)− E(f−i(z−i)|zi)

+ fi(ci) + E(f−i(z−i)|ci)

= f(z)− E(fi(zi)|zi)− E(f−i(z−i)|zi)

+ E(fi(ci)|ci) + E(f−i(z−i)|ci)

= f(z)− E(f(z)|zi) + E(f(z)|ci). (5)

Therefore, we can evaluate Di = G(z)−G(z − zi + ci) as:

Dest1
i = Gf (f(z))−Gf (f(z)− E(f(z)|zi) + E(f(z)|ci)).

The first term of Dest1
i is the same as the original difference reward. The second

term of Dest1
i tries to remove the impact of the other agents, but cannot do this

as elegantly as the difference reward since the form of function f(z) is not known.
Instead of subtracting out fi(zi) and adding fi(ci) directly, we estimate this by
taking the difference between average impact of action zi of f(z) and the average
impact of action ci on f(x). This leaves us with the task of estimating the values of
E(f(z)|zi) and E(f(z)|ci)). These estimates can be computed by keeping a table of
averages where we average the values of the observed f(z) for each value of zi that
we have seen. Note, this estimate improves as the number of samples increases.

4.2. Second estimate

The discussion above is generally applicable to any selection of ci. We can improve
this estimate if we set ci = E(zi) and make the mean squared approximation of
fi(E(z)) ≈ E(fi(z)). The last expectation in Dest1

i is transformed as follows:

E(f(z)|ci) = E

((
fi(zi) +

∑
j �=i

fj(zj)

)∣∣∣∣∣E(zi)

)

= E(fi(zi)|E(zi)) +
∑
j �=i

E(fj(zj))

= E(fi(E(zi))) +
∑
j �=i

E(fj(zj))

≈ E(E(fi(zi))) +
∑
j �=i

E(fj(zj))

=
∑

j

E(fj(zj))

= E(f(z)). (6)



September 16, 2009 16:40 WSPC/169-ACS 00229

Multiagent Learning for Black Box System Reward Functions 481

We then we can estimate G(z)−G(z − zi + ci) as:

Dest2
i = Gf (f(z))−Gf (f(z)− E(f(z)|zi) + E(f(z))).

The estimate Dest2
i is the same as Dest1

i , except that E(f(z)|ci) has been replaced
with E(f(z)). This formulation has two advantages over Dest1

i : First, there are more
samples at our disposal to estimate E(f(z)) than we do to estimate E(f(z)|ci)).
Second, this removes the need to select a value for ci. Since selecting a value of
ci that will lead to high performance can be difficult in some domains, it can be
advantageous to have this parameter removed.

5. Experimental Results

To test the effectiveness of the difference reward and its estimates, we conduct a
series of experiments in two domains. The first domain is an illustrative example in
the form of a distributed marketing problem, where separate marketing agents try
to market a common resource to distinct groups of potential customers. The second
domain tests the performance of our reward system in a complex air traffic flow
domain, where we use the Future ATM Concepts Evaluation Tool (FACET) air
traffic simulator to test the ability of learning agents to create policies that reduce
congestion while minimizing delays [8]. In all experiments, we test the performance
of five different methods. The first method is Monte Carlo (MC) estimation, where
random policies are created, with the best policy being chosen. The other four meth-
ods are based on reinforcement learning agents where the agents are maximizing
one of the following rewards:

(1) the system reward, G(z);
(2) the actual difference reward, Di(z);
(3) the first difference reward estimate, Dest1

i (z); and
(4) the second difference reward estimate, Dest2

i (z).

In these experiments, the aim of each agent is to learn to take actions that
will lead to the best system performance, G. To form policies, each agent uses an
agent-specific reward function and tries to maximize it with its own reinforcement
learner [20, 40] (though alternatives such as evolving neuro-controllers are also
effective [28, 30]). To clearly illustrate the benefit of the reward estimates, in this
paper we focus on domains that only need to utilize immediate rewards. As a
consequence, simple table-based immediate reward reinforcement learning is used.
The reinforcement learner is equivalent to an ε-greedy Q-learner with a discount
rate of 0 [20]. In all the experiments, the learning rate is equal to 0.5 and ε is equal
to 0.25. Note that in many domains, reinforcement learning needs to look at rewards
beyond the immediate reward and address a temporal credit assignment problem of
how to reward a current action for a sequence of future rewards. Difference rewards



September 16, 2009 16:40 WSPC/169-ACS 00229

482 K. Tumer and A. Agogino

have been shown to address both the structural and temporal credit assignment
problems for domains where the functional form of G is known [4].

To make the agent results comparable to the MC estimation, the best policies
chosen by the agents over a single trial are used in the results. MC and similar
random approaches are common in complex air traffic problems [21]. All results are
an average of 30 independent trials with the differences in the mean (σ/

√
n) shown

as error bars, though in most cases the error bars are too small to see.

5.1. Distributed marketing problem

The first domain we study is a distributed marketing problem where a number of
agents need to choose a strategy, and their reward depends on the strategies of all
the agents. This is a form of congestion game where particular joint actions lead to
desirable or undesirable behavior based on the number of other agents that have
selected that particular action [4, 9, 16, 18, 32, 41].

5.1.1. Problem description

In the “Marketing Problem” there are n agents marketing a constrained resource
to n different demographics. Examples include marketing a resort hotel to several
different parts of the country, or a public transportation system to different cities
in a metropolitan area. In this problem, each agent has a finite set of marketing
strategies. The action of agent, i, is to choose a strategy zi. The number of people
who use the resource is an unknown nonlinear function of the marketing of all the
agents, f(z). After each training episode, the value of f(z) is measured. We assume
that the marketers are targeting disjoint groups so f(z) has the following form:
f(z) =

∑
i fi(zi), where fi(zi) is a nonlinear function of agent i’s marketing action.

The function f(z) represents the aggregate sum of the effects of all the agents
marketing actions.

This form represents situations where marketers do not have a model for the
effects of their marketing, so the function fi(zi) is unknown. In addition, the value of
fi(zi) is never measured as we only have measurements of the aggregate number
of people using the resource, f(z). The system goal is to have the optimal amount
of people use the resource. More revenue is gained by having more people use it,
but we do not want it to become overused as that will hurt our reputation (e.g.
overuse a transportation domain would result in congestion). The system goal is
represented by a known nonlinear function of the total number of people using the
resource: G(z) = Gf (f(z)). Note that while the functional form of Gf is known,
the form of G (in terms of z) is not, since f(z) is unknown.

5.1.2. Results

We conducted a series of experiments where agents choose one of M marketing
actions, where an action deterministically resulted in zero to C customers using
the resource, depending on the action. For each agent, the mapping from action to



September 16, 2009 16:40 WSPC/169-ACS 00229

Multiagent Learning for Black Box System Reward Functions 483

 0

 20

 40

 60

 80

 100

 120

 0  20  40  60  80  100  120  140  160  180  200

M
a
xi

m
u
m

 S
ys

te
m

 R
e
w

a
rd

 A
ch

ie
ve

d

Number of Steps

D
D est2
D est1

G
Monte Carlo

Fig. 1. Marketing experiment with 100 agents. The estimates for D perform better than G,
though not as well as the full D, which is not “computable” in many real world domains.

customer response fi(z) was chosen at random at the start of the experiment. The
function Gf was set to ke−k/c where k = f(z) is the aggregate number of customers
that use the resource and c is the optimal capacity for the resource.

Figure 1 shows the performance of the five different methods in a marketing
problem with 100 agents, where M = 10 and C = 18. MC optimization provides a
baseline solution. Agents using G directly as their reward perform slightly better
than MC. But in this case, each agent’s reward is affected by the actions of the
other 99 other agents, making it hard for an agent to discern the effects of its
action on its reward. In contrast agents using the true difference reward learn fast
and learn well. However, this reward is not directly computable when agents do not
know the functional form of f(z) needed to compute the counterfactual Gf (f(z −
zi +ci)). Therefore, this is a theoretical result that cannot be implemented in many
real domains. The results for the estimates to the difference rewards (described in
Sec. 4), where an agent only needs to know the value of f(z), are promising as they
outperform agents using G.

One interesting question that arises concerns the convergence properties of
agents using the different rewards. Unfortunately analysis of convergence in a mul-
tiagent problem is difficult given nonlinear interactions between the agent learning
algorithms and the reward function. In theory, the difference rewards are shown to
converge to (potentially local) minima as long as the system reward converges [33].
In practice, the performance of the agents to not change significantly after 200
learning steps, in these experiments.

Figure 2 shows the scaling results for the number of agents ranging from 1 to 200.
These results show that the relative performance of the algorithms is not affected
by the number of agents. Note that the true difference reward has remarkably good



September 16, 2009 16:40 WSPC/169-ACS 00229

484 K. Tumer and A. Agogino

 0

 20

 40

 60

 80

 100

 120

 0  20  40  60  80  100  120  140  160  180  200

M
a
xi

m
u
m

 S
ys

te
m

 R
e
w

a
rd

 A
ch

ie
ve

d

Number of Agents

D
D est2
D est1

G
Monte Carlo

Fig. 2. Marketing experiment scaling after 200 episodes. The estimates for D degrade more
gracefully than G.

scaling characteristics as its performance does not degrade as the number of agents
is increased from five agents to 200 agents, making it a good choice for large domains
where the functional form of G is known.

5.1.3. Computational cost of D and Dest

The results above show the performance of the different algorithms after a specific
number of episodes, demonstrating that D performs significantly better than the
other algorithms. In domains where the functional form of G is known, D can often
be computed without explicit calls to G [2]. However, if the agents are unable to
streamline their computation of D, agents using the difference reward may be forced
to make many computations of G. In general, for n agents, that means D gets n

times as many G function calls. Table 2 shows the relative performance for a given
number of G evaluations. The reward D performs best when used over the full 200
episodes, but requires 4000 computations of G. The two estimates to D provide

Table 2. Marketing experiment with 100 agents, after 200 G evaluations
(except for D4000 which has 4000 G evaluations at episode 200).

Reward G σ/
√

n Steps

Dest2 94.2 0.5 200
Dest1 93.3 0.5 200
D 52.6 0.8 2
D4000 110.4 0.0003 200
G 76.1 0.7 200
MC 62.6 0.6 200



September 16, 2009 16:40 WSPC/169-ACS 00229

Multiagent Learning for Black Box System Reward Functions 485

the best compromise between performance and computational cost, outperforming
both D and G for a given number of G evaluations. Note that in cases where G

is only computed by sampling the environment, it may not even be possible to
compute D at any computational cost and the estimates will have to be used as
discussed in Sec. 6.

5.2. Air traffic flow problem

The second domain we study is the complex domain of air traffic flow manage-
ment [3, 7, 13, 23, 26, 29, 31]. This is a complex real world problem, where the
agent actions cannot be directly be mapped to a system reward in analytical form,
creating a “black box” reward for the learning system.

5.2.1. Problem description

In this section, we summarize how distributed learning agents can learn to manage
air traffic flow [31]. First, we will assign agents to airspace locations called “fixes” to
map the air traffic problem to a multiagent problem. Each agent is responsible for
any aircraft going through its fix [3, 31]. The action of an agent is to determine the
separation (distance between aircraft) that aircraft have to maintain, when going
through the agent’s fix (though aircraft will always keep a safe distance, ds, if d is
set too low). The effect of issuing higher separation values is to slow down the rate
of aircraft that go through the fix. By increasing the value of d, an agent can limit
the amount of air traffic downstream of its fix, reducing congestion at the expense
of increasing the delays upstream.

Second, we will use FACET (Future ATM Concepts Evaluation Tool, where
ATM stands for Air Traffic Management) to simulate air traffic and determine
the impact of the agents’ actions [8]. FACET simulates air traffic based on flight
plans and through a graphical user interface allows the user to analyze congestion
patterns of different sectors and centers (Fig. 3). FACET also allows the user to
change the flow patterns of the aircraft through a number of mechanisms, including
“metering” aircraft. Metering is performed by choosing a “Miles in Trail” (MIT)
value, which specifies the minimum distance that aircraft may be spaced from each
other when passing through a particular location. Larger MIT values cause aircraft
to be spaced further apart. In this paper, agents send scripts to FACET asking it
to simulate air traffic based on metering orders imposed by the agents. The agents
then produce their rewards based on received feedback from FACET about the
impact of these meterings.

Finally, we will define a system reward function that focuses on the amount of
congestion in a particular sector and on the amount of measured air traffic delay.
This is measured as a function of the agents’ action vector z, specifying the MIT
values chosen by the agents. More precisely, we have:

G(z) = −((1− α)B(z) + αC(z)), (7)



September 16, 2009 16:40 WSPC/169-ACS 00229

486 K. Tumer and A. Agogino

Fig. 3. FACET screen-shot displaying traffic routes.

where B(z) is the total delay penalty for all aircraft in the system, and C(z) is the
total congestion penalty, and α determines the relative importance of these two.
Neither B(z), nor C(z) can be analytically computed by an agent. Rather, they are
computed after the number of aircraft in a sector are computed.

With α = 0.5, for the two-congestion problem in our experiments we used an
instance of this reward function described in detail in Ref. 31 and summarized as
follows:

G(z) = −A1

∑
i

∑
t

u(t− Ti)kt,i(t− Ti)−A2

∑
i

∑
t

u(kt,1 − Ci)eβ(kt,1−Ci), (8)

where t is time, kt,i is the number of aircraft in congestion i, and u(t) is the unit step
function. Ti is the delay penalty constant (T1 = 200 and T2 = 175 here) and Ci is
the congestion penalty constant (C1 = 18 and C2 = 15 here). A1 and A2 are scaling
factors for the delay and congestion terms (A1 = 1

2 and A2 = 50), and β = 0.3.
The values of kt,i are computed by FACET and are affected by the actions of the
agents as described in the following section. The term β is a user defined constant
controlling the penalty curve for congestion. Note that G cannot be expressed in
closed form in terms of the actions of the agents, since the effect of those actions
of the congestion (kt,j) is not known in closed form.

5.2.2. Results

We tested the performance of the different rewards on an air traffic domain with
300 aircraft. The aircraft go through two points of congestion over a four hour
simulation, with 200 going over one point of congestion and 100 going over the
other point of congestion. The second congestion is less severe than the first one,



September 16, 2009 16:40 WSPC/169-ACS 00229

Multiagent Learning for Black Box System Reward Functions 487

-700

-600

-500

-400

-300

-200

 0  50  100  150  200  250  300  350  400  450  500

M
a
xi

m
u
m

 S
ys

te
m

 R
e
w

a
rd

 A
ch

ie
ve

d

Number of Steps

D
D est2
D est1

G
Monte Carlo

Fig. 4. Performance with 300 aircraft, 20 agents. The estimates for D perform better than G,
though not as well as the full D, which is computationally expensive in this domain.

so agents have to form different policies depending which point of congestion they
are influencing. The points of congestion are created by setting up a series of flight
plans that cause the number of aircraft in the sectors of interest to be significantly
more than the number allowed by the FAA.

The results displayed in Fig. 4 show that the relative performance of the five
methods is similar to the Marketing Problem. However, in this case Dest2 performs
better than Dest1. This is caused by the limited amount of data available in this
domain and that Dest2 draws from a larger sample to estimate D, resulting in
a cleaner signal. Figure 5 shows scaling results for the number of agents varying
from 10 to 50 and shows that the conclusions are not sensitive to the number of
agents. Agents using Dest2 perform slightly better than agents using Dest1 in all
cases but for 40 and 50 agents where they are statistically equivalent. While adding
more fixes increases the amount of control the agents have over the system, this
increase does not necessarily improve performance. The main issue is that when the
number of fixes grows in this problem, the number of aircraft going through each
fix decreases. This could result in certain fixes in superior positions to control less
aircraft, causing a reduction in performance.

5.2.3. Computational cost of D and Dest

As was the case for the Marketing domain, the results above show that D is superior
to the other algorithms. However, in the air traffic domain, D can only be computed
with additional calls to the FACET simulator, which come at significant compu-
tational cost. The computation cost of the system reward, G [Eq. (7)] is almost
entirely dependent on the computation of the airplane counts for the congestions



September 16, 2009 16:40 WSPC/169-ACS 00229

488 K. Tumer and A. Agogino

-700

-600

-500

-400

-300

-200

 10  15  20  25  30  35  40  45  50

M
a

xi
m

u
m

 S
ys

te
m

 R
e

w
a

rd
 A

ch
ie

ve
d

Number of Agents

D
D est2
D est1

G
Monte Carlo

Fig. 5. Impact of number of agents on system performance with 300 aircraft. Performance
improves with higher number of agents, but only if the algorithms and agents rewards can “extract”
the extra information.

Table 3. System performance for 20 agents, 300 aircraft, after 2100 G
evaluations (except for D44K which has 44,100 G evaluations at step 2100).

Reward G σ/
√

n Steps

Dest2 −232.5 7.55 2100
Dest1 −234.4 6.83 2100
D −277.0 7.80 100
D44K −219.9 4.48 2100
G −412.6 13.60 2100

MC −639.0 16.40 2100

kt, which need to be computed using FACET.b Except when D is used, the values
of k are computed once per episode. However, to compute the counterfactual term
in D, if FACET is treated as a “black box,” each agent has to compute its own
values of k for their counterfactual resulting in n+1 computations of k per episode.

Table 3 shows the performance of the algorithms after 2100 G computations
for each of the algorithms for the simulations presented in Fig. 4 where there were
20 agents and two congestions. All the algorithms except the fully computed D

reach 2100 k computations at time step 2100. D, however, computes k once for
the system, and then once for each agent, leading to 21 computations per time
step. It therefore reaches 2100 computations at time step 100. We also show the
results of the full D computation at t = 2100, which needs 44,100 computations

bIn our simulations a computation from FACET took 900 milliseconds, while all the other com-
putation for all 20 agents in an episode took a combined 5 milliseconds.



September 16, 2009 16:40 WSPC/169-ACS 00229

Multiagent Learning for Black Box System Reward Functions 489

of k as D44K . Although D44K provides the best result by a slight margin, it is
achieved at a considerable computational cost. Indeed, the performance of the two D

estimates is remarkable in this case as they were obtained with about 20 times fewer
computations of k. Furthermore, the two D estimates, significantly outperform the
full D computation for a given number of computations of k and validate the
assumptions made in Sec. 4. This shows that for this domain, in practice it is more
fruitful to perform more learning steps and approximate D, than few learning steps
with full D computation when we treat FACET as a black box.

6. Discussion

Learning multiagent policies is difficult due to the structural credit assignment
problem of how to credit an action’s contribution to a system reward, which is a
function of many actions. Furthermore, the mapping from agent actions to system
reward cannot always be computed in closed form. This paper proposes to address
this issue using an estimate to a “difference reward” where agents learn using an
agent-centric reward that promotes coordination. On a marketing problem and
an air traffic flow problem, experimental results show that our method provides an
improvement in performance by up to 44% over team games and difference rewards
(when computational cost is taken into account).

Whether the difference reward or its estimate should be used depends on what
is known about the functional form of the system reward, and how much it costs
to compute. We are interested in three main types of system reward:

(1) the system reward has a functional form that is completely known;
(2) the system reward is a black box with high computational costs; or
(3) the system reward is sampled from the environment, where we cannot demand

samples for arbitrary actions.

The air traffic flow management problem is an instance of the second type of
problem, since the FACET simulator can be used as a black box to retrieve values of
f(z), but at an extremely high computational cost. In this case, agents should use
the estimate of the difference reward to save computational costs. The marketing
problem is an instance of the third type because agents do not know fi (i.e. they do
not know how their actions affect their target audience). In this case, the agents can
only count the aggregate number of people affected by all the agents, so they must
use the estimate to the difference reward, since the true difference reward cannot
be computed. (Note that the marketing problem would be the first type of problem
if the values of fi were known ahead of time and the difference reward could be
computed in closed form. In this case, the true difference reward can be used.)

This work provided the groundwork for multiagent learning in domains where
the system reward is not known in closed form. There are three promising extensions
of this work: First, the manner in which the estimate for f(z) used in the difference
rewards is computed can be improved. Currently, we use simple averaging, though



September 16, 2009 16:40 WSPC/169-ACS 00229

490 K. Tumer and A. Agogino

using data aging or similarity measure to provide a weighted average can improve
the estimate. Second, the functional form of the system rewards can be extended
beyond that given in Eq. (1), and use more general machine learning methods
to estimate the difference reward. Third, the difference reward estimates are now
restricted by the form of G. Blending imperfect models of the environment with true
samples in order to compute the difference reward would increase both the speed
and the accuracy of the estimates. We are currently investigating all three avenues
of research and extending the application domains to include robotic exploration
and more realistic forms of the air traffic flow problem (including the role of human
air traffic controllers).

Acknowledgments

The authors thank Dr. Banavar Sridhar and Shon Grabbe for their help with air
traffic flow management and the FACET simulator. This work was partially sup-
ported by AFOSR grant number FA9550-08-1-0187.

References

[1] Agogino, A. and Tumer, K., Unifying temporal and structural credit assignment
problems, in Proc. Third Int. Joint Conf. on Autonomous Agents and Multi-Agent
Systems (New York, NY, 2004).

[2] Agogino, A. and Tumer, K., QUICR-learning for multiagent coordination, in Proc.
21st National Conf. on Artificial Intelligence (Boston, MA, 2006).

[3] Agogino, A. and Tumer, K., Regulating air traffic flow with coupled agents, in Proc.
Seventh Int. Joint Conf. on Autonomous Agents and Multi-Agent Systems (Estoril,
Portugal, 2008).

[4] Agogino, A. K. and Tumer, K., Handling communication restrictions and team for-
mation in congestion games, J. Auton. Agents Multi Agent Syst. 13 (2006) 97–115.

[5] Agogino, A. K. and Tumer, K., Efficient evaluation functions for evolving coordina-
tion, Evol. Comput. 16 (2008) 257–288.

[6] Bagnell, J. A. and Ng, A. Y., On local rewards and the scalability of distributed
reinforcement learning, News Physiol. Sci. 18 (2006).

[7] Bayen, A. M., Grieder, P., Meyer, G. and Tomlin, C. J., Lagrangian delay predictive
model for sector-based air traffic flow, AIAA J. Guid. Cont. Dyn. 28 (2005) 1015–
1026.

[8] Bilimoria, K. D., Sridhar, B., Chatterji, G. B., Shethand, K. S. and Grabbe, S. R.,
Facet: Future atm concepts evaluation tool, Air Traffic Cont. Q. 9 (2001).

[9] Challet, D. and Zhang, Y. C., On the minority game: Analytical and numerical
studies, Physica A 256 (1998) 514.

[10] Crites, R. H. and Barto, A. G., Improving elevator performance using reinforcement
learning, in Advances in Neural Information Processing Systems, eds. Touretzky,
D. S., Mozer, M. C. and Hasselmo, M. E., Vol. 8 (MIT Press, 1996), pp. 1017–1023.

[11] de Oliveira, D., Ferreira, P. R. Jr., and Bazzan, A. L. C., A swarm based approach
for task allocation in dynamic agents organizations, in AAMAS ’04: Proc. Third
Int. Joint Conf. on Autonomous Agents and Multiagent Systems (IEEE Computer
Society, Washington, DC, USA, 2004), pp. 1252–1253.



September 16, 2009 16:40 WSPC/169-ACS 00229

Multiagent Learning for Black Box System Reward Functions 491

[12] Dietterich, T. G., Hierarchical reinforcement learning with the maxq value function
decomposition, J. Artif. Intell. 13 (2000) 227–303.

[13] Donohue, G. L. and Shaver III, R. D., TERMINAL CHAOS: Why U.S. Air Travel
Is Broken and How to Fix It (Amer Inst of Aeronautics and Astronautics, 2008).

[14] Guestrin, C., Lagoudakis, M. and Parr, R., Coordinated reinforcement learning, in
Proc. 19th Int. Conf. on Machine Learning (2002).

[15] Hill, J. C., Johnson, F. R., Archibald, J. K., Frost, R. L. and Stirling, W. C., A
cooperative multiagent approach to free flight, in AAMAS ’05: Proc. Fourth Int.
Joint Conf. on Autonomous Agents and Multiagent Systems (ACM Press, New York,
NY, USA, 2005), ISBN 1-59593-093-0, pp. 1083–1090.

[16] Jefferies, P., Hart, M. L. and Johnson, N. F., Deterministic dynamics in the minority
game, Phys. Rev. E 65(016105) (2002).

[17] Jennings, N. R., On agent-based software engineering, Artif. Intell. 177 (2000) 277–
296.

[18] Johnson, N. F., Jarvis, S., Jonson, R., Cheung, P., Kwong, Y. R. and Hui, P. M.,
Volatility and agent adaptability in a self-organizing market (1998), preprint cond-
mat/9802177.

[19] Jones, C. and Mataric, M. J., Adaptive division of labor in large-scale multi-robot
systems, in IEEE/RSJ Int. Conf. on Intelligent Robots and Systems (IROS-03) (Las
Vegas, NV, 2003), pp. 1969–1974.

[20] Kaelbling, L. P., Littman, M. L. and Moore, A. W., Reinforcement learning: A survey,
J. Artif. Intell. Res. 4 (1996) 237–285.

[21] Lecchini, A., Glover, W., Lygeros, J. and Maciejowskia, J., Monte Carlo optimization
strategies for air-traffic control, AIAA Guidance, Navigation, and Control Conference
(San Francisco, CA, 2005), pp. 470–482.

[22] McGlohon, M. and Sen, S., Learning to cooperate in multiagent systems by combining
Q-learning and evolutionary strategy, Int. J. Lateral Comput. 1 (2005) 58–64.

[23] Menon, P. K., Sweriduk, G. D. and Sridhar, B., Optimal strategies for free flight air
traffic conflict resolution, J. Guid. Cont. Dyn. 22 (1999) 202–211.

[24] Nair, R., Tambe, M., Yokoo, M., Pynadath, D. and Marsella, S., Taming decentral-
ized POMDPs: Towards efficient policy computation for multiagent settings, in Proc.
Eighteenth Int. Joint Conf. on Artificial Intelligence (Acapulco, Mexico, 2003).

[25] Parkes, D. and Singh, S., An MDP-based approach to online mechanism design, News
Physiol. Sci. 16 (2004) 791–798.

[26] Pechoucek, M., Sislak, D., Pavlicek, D. and Uller, M., Autonomous agents for air-
traffic deconfliction, in Proc. Fifth Int. Joint Conf. on Autonomous Agents and Multi-
Agent Systems (Hakodate, Japan, 2006).

[27] Stone, P., Sutton, R. S. and Kuhlmann, G., Reinforcement learning for RoboCup-
soccer keepaway, Adapt. Behav. (2005).

[28] Taylor, M. E., Whiteson, S. and Stone, P., Comparing evolutionary and temporal
difference methods for reinforcement learning, in Proc. Genetic and Evolutionary
Computation Conf. (Seattle, WA, 2006), pp. 1321–1328.

[29] Tomlin, C., Pappas, G. and Sastry, S., Conflict resolution for air traffic management:
A study in multiagent hybrid systems, IEEE Trans. Automat. Cont. 43 (1998) 509–
521.

[30] Tumer, K. and Agogino, A., Coordinating multi-rover systems: Evaluation functions
for dynamic and noisy environments, in The Genetic and Evolutionary Computation
Conference (Washington, DC, 2005).

[31] Tumer, K. and Agogino, A., Distributed agent-based air traffic flow management,
in Proc. Sixth Int. Joint Conf. on Autonomous Agents and Multi-Agent Systems
(Honolulu, HI, 2007), pp. 330–337.



September 16, 2009 16:40 WSPC/169-ACS 00229

492 K. Tumer and A. Agogino

[32] Tumer, K., Welch, Z. T. and Agogino, A., Aligning social welfare and agent prefer-
ences to alleviate traffic congestion, in Proc. Seventh Int. Joint Conf. on Autonomous
Agents and Multi-Agent Systems (Estoril, Portugal, 2008).

[33] Tumer, K. and Wolpert, D. (eds.), Collectives and the Design of Complex Systems
(Springer, New York, 2004).

[34] Tumer, K. and Wolpert, D. H., Collective intelligence and Braess’ paradox, in Proc.
Seventeenth National Conf. on Artificial Intelligence (Austin, TX, 2000), pp. 104–
109.

[35] Tuyls, K. and Parsons, S., What evolutionary game theory tells us about multiagent
learning, Artif. Intell. 171 (2007).

[36] Verbeeck, K., Nowe, A. and Tuyls, K., Coordinated exploration in multiagent rein-
forcement learning: An application to loadbalancing, in Proc. Fourth Int. Joint Conf.
on Autonomous Agents and Multi-Agent Systems (Utrecht, The Netherlands, 2005).

[37] Verbeeck, K., Peeters, M., Nowe, A. and Tuyls, K., Reinforcement learning in stochas-
tic single and multi-stage games, in Adaptive Agents and Multi-Agent Systems II,
Lecture Notes in Artificial Intelligence (Springer Verlag, Berlin, 2005), pp. 275–294.

[38] Vidal, J. M., Multiagent coordination using a distributed combinatorial auction, in
AAAI Workshop on Auction Mechanism for Robot Coordination (2006).

[39] Vidal, J. M. and Durfee, E. H., The moving target function problem in multiagent
learning, in Proc. Third Int. Conf. on Multi-Agent Systems (AAAI/MIT press, 1998),
pp. 317–324.

[40] Whiteson, S., Taylor, M. E. and Stone, P., Empirical studies in action selection for
reinforcement learning, Adapt. Behav. 15 (2007).

[41] Wolpert, D. H. and Tumer, K., Optimal payoff functions for members of collectives,
Adv. Complex Syst. 4 (2001) 265–279.



Coevolution of Heterogeneous Multi-Robot Teams

Matt Knudson
Oregon State University

Corvallis, OR, 97331
knudsonm@engr.orst.edu

Kagan Tumer
Oregon State University

Corvallis, OR, 97331
kagan.tumer@oregonstate.edu

ABSTRACT
Evolving multiple robots so that each robot acting indepen-
dently can contribute to the maximization of a system level
objective presents significant scientific challenges. For exam-
ple, evolving multiple robots to maximize aggregate infor-
mation in exploration domains (e.g., planetary exploration,
search and rescue) requires coordination, which in turn re-
quires the careful design of the evaluation functions. Ad-
ditionally, where communication among robots is expensive
(e.g., limited power or computation), the coordination must
be achieved passively, without robots explicitly informing
others of their states/intended actions. Coevolving robots
in these situations is a potential solution to producing co-
ordinated behavior, where the robots are coupled through
their evaluation functions. In this work, we investigate co-
evolution in three types of domains: (i) where precisely n
homogeneous robots need to perform a task; (ii) where n
is the optimal number of homogeneous robots for the task;
and (iii) where n is the optimal number of heterogeneous
robots for the task. Our results show that coevolving robots
with evaluation functions that are locally aligned with the
system evaluation significantly improve performance over
robots evolving using the system evaluation function di-
rectly, particularly in dynamic environments.

Categories and Subject Descriptors
I.2.6 [AI]: Learning

General Terms
Algorithms, Experimentation

Keywords
Robot coordination; Coevolution; Team Formation

1. INTRODUCTION
Coordinating multiple robots to achieve a system-wide ob-

jective in an unknown and dynamic environment is critical

Permission to make digital or hard copies of all or part of this work for
personal or classroom use is granted without fee provided that copies are
not made or distributed for profit or commercial advantage and that copies
bear this notice and the full citation on the first page. To copy otherwise, to
republish, to post on servers or to redistribute to lists, requires prior specific
permission and/or a fee.
GECCO’10, July 7–11, 2010, Portland, Oregon, USA.
Copyright 2010 ACM 978-1-4503-0072-8/10/07 ...$10.00.

to many of today’s relevant applications, including the au-
tonomous exploration of planetary surfaces and search and
rescue in disaster response. In such cases, the environment
may be dangerous, uninhabitable to humans all together, or
sufficiently distant from central control that response times
require autonomous, coordinated behavior. Evolutionary al-
gorithms are particularly relevant to these applications, as
solutions to robotic behavior in such complex environments
are difficult or impossible to model.

In general, most multi-robot tasks can be broadly catego-
rized into [8]: (i) tasks where a single robot can accomplish
the task, but where having a multi-robot system improves
the process (for example, terrain mapping or trash collec-
tion); and (ii) tasks where multiple robots are necessary to
achieve a task (for example to carry an object). In both
cases, coordination requires addressing many challenges (low
level navigation, high level decision making, inter-robot co-
ordination) each of which requires some degree of informa-
tion gathering [17]. However, in the first case, a failure of
coordination leads to inefficient use of resources, whereas
in the second, it leads to a complete system breakdown.
Therefore, a delicate balance must be established within a
robots’ behavior such that coordination is achieved without
an overly strict adherence to a specific coordination proto-
col. Through coevolution, robots are given the freedom to
develop their own protocols to benefit the system objective.

In this work, we focus on problems of the second type,
and investigate the robot evaluation functions that need to
be derived for the overall system to achieve high levels of per-
formance. To that end, we investigate the use of difference
evaluation functions to promote team formation [3]. Such
evaluation functions have previously been applied to multia-
gent coordination problems of the first type [1, 18]. The key
contribution of this work is to extend those results to coor-
dination problems of the second type where unless tight co-
ordination among the agents is established and maintained,
the tasks cannot be accomplished. We develop teams within
the multi-robot system using passive means (e.g., no explicit
coordination directives) through the coupling of the robots’
evaluation functions.

The application domain we selected is a distributed infor-
mation gathering problem. First we explore the case where
unless a particular point of interest is observed by n robots,
the point of interest is not considered as observed. Second we
explore the case where there is an optimal number of robots
(n) that need to observe a point of interest, but where the
system receives some value for observations by teams with
other than n members. Finally, we construct a system where



the individuals are of differing capabilities, and one of each
type is needed to provide optimal behavior.

In Section 2 we discuss the robot exploration problem. In
Section 3, we present the problem requiring team formation.
In Section 4 we present the problem of encouraging rather
than requiring team formation, and in Section 5 we present
heterogeneous teams with robots of two types. Finally in
Section 6 we discuss the implication of these results and
highlight future research directions.

1.1 Related Work
Extending single robot approaches to multi-robot systems

presents difficulties in ensuring that the robots learn a par-
ticular task beneficial to the overall system. New approaches
that are particularly well suited to multi-robot systems in-
clude using Markov Decision Processes for online mechanism
design [15], developing new reinforcement learning based
algorithms [4, 6, 9, 10], devising agent-specific evaluation
functions [3], and domain based evolution [5]. In addition,
forming coalitions for purposes of reducing search costs [11],
employing multilevel learning architectures for the forma-
tion of coalitionsl [16], and market based approaches [21]
have been examined.

The use of evolutionary algorithms in a multiagent domain
is attractive due to the complex, non-Markovian nature of
most systems. Coevolution furthers the advantages by eval-
uating the performance of individuals based on the interac-
tions with others within the system. Coevolution algorithms
tend to favor stability over optimality however [19], finding
stable equilibria in agent behavior. One method used to al-
leviate this tendency is biasing the evaluation functions such
that the fitness is evaluated on the most beneficial collabora-
tive agents [13, 14]. The work in this paper is similar, where
the most beneficial collaborators are those robots that most
closely observe a Point of Interest, evaluated through a dif-
ference function. In addition, cooperative coevolution was
further classified by defining a robustness criterion, demon-
strated on a set of standard multiagent problems [20]. An in-
teresting further extension to coevolution encodes individual
agents with a base skill-set [7], preventing coevolved agents
from having to learn the same thing independently.

2. ROBOT COORDINATION
The multi-robot information gathering problem we inves-

tigate in this work consists of a set of robots that must ob-
serve a set of points of interest (POIs) within a given time
window [3]. The POIs have different importance to the sys-
tem, and each observation of a POI yields a value inversely
related to the distance the robot is from the POI. In ad-
dition, and particular to the work presented in this paper,
multiple observations of a POI are either required (Section 3)
or highly beneficial (Section 4) to the system objective.

2.1 Robot Capabilities
Each robot uses an evolutionary algorithm to map its sen-

sor inputs to an x, y translation relative to the current po-
sition of the robot. Each robot utilizes a two layer sigmoid
activated artificial neural network to perform this mapping.

The inputs to this neural network are four POI sensors
(Equation 1) and four robot sensors (Equation 2), where
xPOI

q and xROBOT
q provide the POI and robot “richness”

of each quadrant q, respectively, Vj and Lj are the value
and location of POI j respectively, Li is the location of the

current robot i and θj,q is the separation in radians between
the POI and the center of the sensor quadrant.

xPOI
i,q =

X
j

Vj

δ(Lj , Li)

„
1− |θj,q|

(π/4)

«
(1)

xROBOT
i,q =

X
k,k 6=i

1

δ(Lk, Li)

„
1− |θk,q|

(π/4)

«
(2)

The two outputs indicate the velocity of the robot (in
the two axes parallel and perpendicular to the current robot
heading). The weights of the neural network are adjusted
through an evolutionary search algorithm [3, 2] for ranking
and subsequently locating successful networks within a pop-
ulation [12, 3]. The algorithm maintains a population of
ten networks, utilizes mutation to modify individuals, and
ranks them based on a performance metric specific to the
domain. The search algorithm used is shown in Figure 1
which displays the ranking and mutation steps.

Initialize N networks at T = 0
For T < Tmax Loop:

1. Pick a random network Ni from population

With probability ε: Ncurrent ← Ni

With probability 1− ε: Ncurrent ← Nbest

2. Mutate Ncurrent to produce N ′

3. Control robot with N ′ for next episode

4. Rank N ′ based on performance
(evaluation function)

5. Replace Nworst with N ′

Figure 1: Evolutionary Algorithm: An ε-greedy evo-

lutionary algorithm to determine the weights of the neural

networks. See text body for definitions. T indexes episodes,

N indexes networks with appropriate subscripts, and N ′ is the

modified network for use in control of the current episode.

In this domain, mutation (Step 2) involves adding a ran-
domly generated number to every weight within the network.
This can be done in a large variety of ways, however it is
done here by sampling from a random Cauchy distribution
where the samples are limited to the continuous range [-
10.0,10.0] [3]. Ranking of the network performance (Step 4)
is done using a domain specific evaluation function, and is
discussed in the following section.

2.2 Robot Objectives
In these experiments, we used three different evaluation

functions [3] to determine the performance of the robot: the
system evaluation function which rates the performance of
the full system; a local evaluation function that rates the
performance of a “selfish” robot; and a difference evaluation
function that aims to capture the impact of a robot in the
multi-robot system [3]. These three evaluation functions are:

• The system evaluation reflects the performance of the
full system. Though robots optimizing this evaluation
function guarantees that the robots all work toward



the same purpose, robots have a difficult time discern-
ing their impact on this function, particularly as the
number of robots in the system increases.

• The local evaluation reflects the performance of the
robot operating alone in the environment. Each robot
is rewarded for the sum of the POIs it alone observed.
If the robots operate independently, optimizing this
evaluation function would lead to good system behav-
ior. However, if the robots interact frequently, then
each robot aiming to optimize its own local function
may lead to competitive rather than cooperative be-
havior.

• The difference evaluation reflects the impact a robot
has on the full system [3, 2]. By removing the value
of the system evaluation where robot i is inactive, the
difference evaluation computes the value added by the
observations of robot i alone. Because only POIs to
which robot i were closest need this difference com-
puted, this evaluation function is “locally” computable
in most instances.

Though conceptually the same, the specifics of these eval-
uations are different for each of the problems described in
the following sections. We derive those specific evaluation
structures and present the experimental results below.

3. REQUIRING TEAM FORMATION
In the first problem we examine, the robots need to form

teams to perform a task and contribute to the system objec-
tive. In this problem, a POI is considered observed only if n
robots visit that POI from within a certain observation dis-
tance. Neither the robot, nor the system receive any value
unless multiple observations of a POI occur. This problem
formulation ensures that the problem is one that cannot be
solved by a single robot and that the team formation is es-
sential to the completion of each task.

3.1 Problem Definition
To formalize this problem, let us first focus on a problem

where the observations of the two robots closest to a POI
are tallied. If more than two robots visit a POI, only the
observations of the closest two are considered and their visit
distances are averaged in the computation of the system
evaluation (G), which is given by:

G(z) =
X

i

X
j

X
k

Vi N
1
i,j N

2
i,k

1
2
(δi,j + δi,k)

(3)

where Vi is the value of the ith POI, δi,j is the closest dis-
tance between jth robot and the ith POI, and N1

i,j and N2
i,k

determine whether a robot was within the observation dis-
tance δo and the closest or second closest robot, respectively,
to the ith POI:

N1
i,j =


1 if δi,j < δo and δi,j < δi,l ∀l 6= j
0 otherwise

(4)

and

N2
i,k =


1 if δi,k < δo and δi,k < δi,l ∀l 6= j, k
0 otherwise

(5)

The single robot evaluation function used by each robot
only focuses on the value a robot receives for observing a

particular POI, and results in:

Pj (z) =
X

i

Vi

δi,j
if δi,j < δo (6)

This evaluation promotes selfish behavior only, providing
a clear, easy-to-learn signal, but one not aligned with the
system objective as a whole.

Finally, the difference evaluation for a robot aims to pro-
vide system-wide beneficial behavior, while remaining sensi-
tive to the actions of a robot [3]. This difference evaluation
function is given by:

Dj (z) =

8>>>><>>>>:
P
i

 
Vi

1
2

“
δi,j+δi,k

” − Vi
1
2

“
δi,j+δi,l

”
!

if δi,j , δi,k < δi,l < δoP
i

Vi
1
2 (δi,j+δi,k)

if δi,j , δi,k < δo

0 otherwise
(7)

where l is the third closest robot to POI i (meaning that
robots j and k are the closest two for the first two condition-
als). All three of these evaluations were applied for learn-
ing in many different situations, though for brevity, only an
environment with 50 POIs and 40 robots (which was repre-
sentative of the general performance of the evaluations) is
presented.

Figure 2: Sample robot paths in an exploration scenario.

Multiple observations are made of a particular point of in-

terest. In the team formation domain, multiple observations

must be made for the POI to have any value to the system.

Background courtesy of JPL.

Figure 2 shows a schematic of how these evaluation func-
tions are computed, given that all three robots are within
the observation radius. Only robots 1 and 2 (R1 and R2)
are taken into consideration when calculating G(z) because
their observation distance (δ1,1 and δ1,2) are closer than R3
(δ1,3). For G(z), robot 3’s observation is discarded. For the
difference evaluation for robots 1 or 2, robot 3 is taken into
consideration. For example, in calculating Equation 7 for
R2, the first term considers R1 and R2, where the second
term considers R1 and R3. That is, R2 receives the differ-
ence between the observation values of R1 and R2 and the
observation values of R1 and R3.

3.2 Results
The environment used for presentation in this paper con-

tained 40 robots and 50 POIs, providing a great deal of



Figure 3: Team Formation Required Left: System evaluation is plotted versus episode for learning in an environment containing

40 robots and 50 POIs. Right: Maximum evaluation achieved is plotted for equal numbers of robots and POIs. Learning is

done with system, local, and difference evaluations requiring the formation of teams of two robots.

information to be gathered, while simultaneously creating
a congested situation. In addition, the environment was
highly dynamic, where 10% of the POIs (selected randomly)
changed location and value at each episode. This was done
to encourage specific coordination behavior based on sen-
sor inputs rather than specific x-y coordinates. The results
are based on 2000 episodes of 30 time-steps each, and are
averaged for significance.

Figure 3 (left) shows that robots using all three evalua-
tions perform significantly better than random behavior. It
also shows that the difference evaluation provides a signal
that allows the robots to learn to coordinate their actions,
whereas using the system and local evaluations do not. Ad-
ditionally, Figure 3 (right) shows that the difference evalu-
ation does not provide benefits until the system reaches the
point of high complexity.

4. ENCOURAGING TEAM FORMATION
In the second problem we examine, multiple robots are

encouraged (rather than required) to form teams to perform
a task and contribute to the system objective. In this prob-
lem, a POIs value is optimized for n robots observing it, but
the system receives lesser value for other numbers of robots
observing the POI. Figure 4 shows the functional form of
the two system evaluations used in Section 3 and Section 4.

Figure 4: POI value structure is compared between the

required (left) and encouraged (right) team formation sys-

tems.

4.1 Problem Definition
For these evaluations, δo remains the same, however the

distance of observation is no longer explicitly included in
the evaluation function, relying on inherent inclusion in the
observation radius of the POI. As before, three evaluation
functions are defined, beginning with the system evaluation
given by:

G(z) =
X

i

αVixe
−x
β (8)

where i indexes POIs, x is the number of robots within δo,
β is the observation capacity, and α is a constant chosen
to be 1.37 such that the maximum of the exponential curve
approximates the POI value Vi.

For this new system evaluation, the selfish robot evalua-
tion is defined as:

Pj (z) =
X
ij

αVi,jxe
−x
β (9)

where indexing and constant selection is the same as above.
This evaluation includes no information regarding contribu-
tion to the system as a whole, rather indicating only what
robot j can directly observe. This robot evaluation is the
component of the system objective for which robot j was
within the observation distance δo of each POI.

Finally, the difference evaluation function for this system
results in:

Dj (z) =
X
ij

αVi,j

»
xe
−x
β − (x− 1) e

−(x−1)
β

–
(10)

where indexing and constant selection is the same as above.
This evaluation aims to provide the contribution of robot
j to the system. The performance of all three evaluation
functions are presented in the next section.

4.2 Results
All training parameters were maintained from those used

in Section 3.2, including the number of POIs and robots.



Figure 5: Team Formation Encouraged Left: System evaluation is plotted versus episode for learning in an environment

containing 40 robots and 50 POIs. Right: Maximum evaluation achieved is plotted for equal numbers of robots and POIs.

Learning is done with system, local, and difference evaluation functions requiring the formation of teams of two robots.

The results presented in Figure 5 are qualitatively similar
to those seen in Figure 3. This is a good result, demonstrat-
ing that the team requirement in general is applicable and
successful for multiple formulations of the problem (does not
depend on the exact form of G). As before, the difference
evaluation provides consistent behavior throughout, where
the system evaluation function (aligned with system, but
not sensitive to a given robot’s actions) and local evaluation
(sensitive to a robot’s action, but not necessarily aligned
with the system evaluation) break down.

Here again Figure 5 (right) shows that as the system in-
creases in complexity, the difference evaluation, through pro-
viding a better learning signal, provides consistent behavior
through the increased complexity of the system. The sys-
tem and local learning evaluation function performance ta-
pers off, where using the difference evaluation maintains its’
performance slope, clearly indicating that when the number
of robots within the system becomes large, the difference
evaluation is able to maintain successful dynamic team for-
mation. In addition, through encouraging team formation,
rather than requiring it, we have presented a simpler prob-
lem to learn.

4.3 Higher Coordination Requirements
The previous two sections investigated coordination for

n = 2, for both required and encouraged team formation
scenarios. The behavior of the three evaluation functions
was similar for both cases. In this section we investigate
the behavior for n = 3, a change that has significant impact
on the computation of G, particularly when the observation
distance is not increased.

Figure 6 (left) shows the learning results for requiring
three robots to observe a POI. The all-or-nothing learning
structure in this evaluation function makes it very difficult
for a robot using passive team formation to extract the rel-
evant signal. This brings the difference evaluation closer to
the system objective by reducing its sensitivity to a particu-
lar robot’s actions (that is, in most cases, removing a robot
from the system has no impact on the system performance).
As a consequence, the difference evaluation fails to promote
good system-level behavior.

By contrast, Figure 6 (right) shows the behavior of the
system where team formation is encouraged by a decaying
value assignment to POI observations. In this case, moving
from n = 2 to n = 3 does not affect the difference evalua-
tion. This is because in this problem, removing a robot has
a computable impact on the system objective. This creates
a “gradient” for evaluating the impact of a robot on the sys-
tem as a whole. As a consequence, the difference evaluation
performs better than system or local evaluation functions.

We combine the conclusions that a) encouraging dynamic
teams, rather than requiring them, is more robust to changes
in system definition and, b) difference evaluations are more
successful in systems changing in the number of robots and
POIs from the above sections to formulate a problem for
heterogeneous team formation in the following section.

5. HETEROGENOUS TEAM FORMATION
The success in team formation shown in the above sections

points to an investigation of teams constructed of heteroge-
nous robots. When the entire team is made of robots of
identical construction, the tasks are limited to general re-
dundant observations of an environment to provide robust-
ness, or mechanical tasks that require multiple individuals
to provide enough effort. In contrast, if the individuals can
learn to dynamically partner with one-another, the question
arises whether or not, given additional sensing, individuals
of differing construction can partner to provide a more spe-
cific suite of tasks.

5.1 Problem Definition
In the final problem we investigate, we define two robot

types; blue and green. These can represent any number of
possible construction differences, including sensing and ar-
ticulation, depending on the system in which they are in-
stalled. The individuals must have the ability to determine
the difference between the two, for example a blue robot
must be able to determine that there are green robots else-
where in the environment. In addition, the evaluation func-
tion must again be modified to represent the need for robots
of differing capabilities to visit a POI.



Figure 6: Higher Coordination Requirements (n = 3) Left: Required Team Formation. Right: Encouraged Team Formation.

System evaluation is plotted versus episode for learning in an environment containing 40 robots and 50 POIs. Learning is done

with system, local, and difference evaluation functions for three robots to observe a POI.

The sensing capabilities are similar to those shown in Sec-
tion 2.1. For each quadrant q however, the robot sensor is
split into two, one indicating the density of “blue” robots
and the other indicating “green” robots. This increases the
number of inputs to the neural network from 8 to 12, and
the number of hidden units was increased accordingly. This
configuration maintains comparability to homogeneous ap-
plications while providing the differentiation between robot
types needed by the new problem.

We showed that encouraging team formation is more ben-
eficial to the learning process over requiring team formation,
and therefore the modified evaluation function reflects the
exponential form as much as possible. Again, δo remains
the same, and the functional form includes the number of
robots in the observation radius of a given POI. The number
of observations however is separated into the number of blue
robots and green robots that made observations. Therefore,
the optimal solution is not only that two robots visit, but
that one of each type visits each POI.

As with previous work, three evaluation functions were
defined for comparison, reflecting the styles discussed in Sec-
tion 2.2. Beginning with the system-level evaluation:

G (z) =
X

i

αVixbxge
−xbxg
βbβg (11)

where xtype is the number of observations of a POI i of each
type of robot, α is a scaling constant to ensure the maximum
of the function approximates the POI value Vi (set to 2.72
for these experiments), and βx are the constants to produce
functional peaks at the desired number of observations of
each type of robot. For example, to have one of each type
observe a POI, βb = βg = 1, which is the configuration for
subsequent experiments.

The local evaluation is similar to the above, however it
reflects only the POIs that robot j has visited. Therefore it
is locally computable and easy to learn, but does not indicate
the robot’s impact on the system as a whole:

Pj (z) =
X
ij

αVi,jxbxge
−xbxg
βbβg (12)

where indexing and constant selection is the same as the
above.

Finally, the difference evaluation includes information con-
tained in the system-level evaluation, but is easier to learn as
it directly indicates how robot j contributed to the system
as a whole. It is contingent on the type of robot j:

Dj (z) =
X
ij

αVi,j

„
xbxge

−xbxg
βbβg − (xb − 1)xge

−(xb−1)xg
βbβg

«
(13)

where indexing and constant selection is the same as above.
The equation shown is for robot j of type blue, where if the
type is green, 1 is subtracted from the green robot obser-
vations rather than the blue. The experimental results for
the use of all three evaluation functions follows in the next
section.

5.2 Results
The domain for the experiments involving heterogeneous

teams is the same as that used in the above work. Each robot
is randomly assigned a type at the beginning of each experi-
ment based on a given team ratio. Learning time is adjusted
from 2000 episodes to 3000 as the network has increased
in size, and the problem has increased in difficulty, slightly
decreasing convergence speed. The environment maintains
its dynamic nature, where 10% of the POIs change location
and value at every episode, though the robots maintain their
type throughout the learning process.

Figure 7 (left) shows the results of training in an environ-
ment where 40 robots and 50 POIs are present. The ratio
of blue to green robots is 50%, meaning there are 20 of
each type present. With the increased problem complexity
we observe that the local evaluation is entirely incapable of
learning a good solution, in fact learning the wrong thing,
performing worse than random parameter selection (network
weights) after convergence.



Figure 7: Heterogeneous Team Formation Left: System performance for an environment containing 40 robots and 50 POIs.

Learning is done with system, local, and difference evaluation functions requiring the formation of teams of two robots, one of

each type. Right: Maximum performance achieved for equal numbers of robots and POIs. Learning is done with system, local,

and difference evaluation functions encouraging the heterogeneous formation of teams of two robots.

As with the results in Section 4.2, learning with the system-
level evaluation function proves difficult, as there is a great
deal of information contained in the signal; too much regard-
ing other robots for each individual to ascertain what actions
are best in contributing to the system as a whole. The dif-
ference evaluation however, as expected, learns quickly and
maintains performance through the learning process. This
confirms the applicability of the difference evaluation in gen-
eral, and specifically indicates that dynamically requiring
heterogeneous team formation in a congested and dynami-
cally changing environment is achievable, indeed successful.

We next examine the impact of increasing both the num-
ber of robots and the number of POIs within the system si-
multaneously. Figure 7 (right) shows the maximum system-
level evaluation function achieved for varying numbers of
robots and POIs (where the number of robots and POIs is
the same). The local evaluation begins poorly and decreases
further as the system complexity increases, as shown in pre-
vious figures. Using the system-level evaluation for learning,
while increasing slightly as complexity increases, is strongly
outperformed by the difference evaluation. As with all pre-
vious dynamic team formation work in this paper, utiliza-
tion of the evaluation function significantly improves perfor-
mance over the others, and provides an excellent learning
signal for dynamic team formation, particularly in domains
absent of communication and heterogeneous in construction.

In varying the ratio between robot types present in the
system, we can determine if the robots are able to modify
their behavior to suit changes in system consistently. For
example, if a large set of robots of a specific type fail, the
system must have the ability to adjust coordination behavior
to maintain success in accomplishing the tasks requested.
Figure 8 shows the maximum system performance achieved
when the ratio between blue and green robots is varied. The
variance is symmetrical, therefore 10% blue and 90% green
is the same as 10% green and 90% blue. The number of
robots and POIs present in the system is held constant.

The local evaluation always performs poorly, and the ratio
of types within the system has little impact on the perfor-
mance of the system evaluation. This points to a lack of

Figure 8: Heterogeneous Team Ratios: System evalua-

tion is plotted versus episode for learning in an environment

containing 40 robots and 50 POIs. Learning is done with sys-

tem, local, and difference evaluation functions requiring the

formation of teams of two robots, one of each type. The ratio

between blue and green robots varies in the system.

attention paid to the heterogeneous nature of the team in
the behavior of the robots that learn with the system evalu-
ation. The difference evaluation however varies significantly
when the teams are strongly unbalanced, particularly when
the ratio is set to 20%. This is due to the variance in sensing
information during the learning process. For example, when
there are much fewer robots of one type within the system,
the sensors detecting the two types return significantly dif-
ferent levels of information, and therefore the algorithm can
learn to focus on the sensors showing where robots of a differ-
ent type are located. This provides additional information
to the algorithm regarding the actions that will lead directly
to an increase in the learning evaluation performance.



6. DISCUSSION AND FUTURE WORK
Exploration of planetary surfaces or in disaster response

requires that robotic solutions operate in unknown and dy-
namic environments. Coordinating multiple robots in such
domains presents additional challenges. In this work, we
explore multi-robot coordination domains where multiple
robots are necessary to achieve a task (for example to carry
an object). We focus on passive coordination that is accom-
plished through the robots’ evaluation functions.

The work presented is this paper explores three types of
problems where robot coordination is beneficial. First, we
explore a problem where n robots must coordinate to receive
a reward. Then, we explore a problem where the system
reward is optimized for n robots, but other number of robots
observing a POI also contribute to the system objective.
Finally we develop a heterogeneous system where two types
of robots are present, and an observation by one of each
produces optimal behavior.

In all three cases, coordination and team formation is es-
tablished and maintained through passive means encoded in
the robots evaluation functions. The difference evaluation
yielded the best results because it provided an evaluation
that was aligned with the overall system evaluation, while
maintaining sensitivity to a robot’s actions, even when many
robots were active within the coordinated system. That ap-
proach also extended to three or more robots encouraged to
complete a task. This is an interesting result showing that
the difference evaluation is best suited to domains where the
impact of a robot on a system can be ascertained.

We are currently implementing the work discussed in this
paper in robot hardware. This involves investigating non-
episodic learning such that coordination and ad-hoc team
formation can be learned while the robot is in current oper-
ation. In addition, extensions to the learning algorithm used
in this paper will be investigated to facilitate the restrictions
of physical hardware.

Acknowledgments
This work was partially supported by AFOSR grant FA9550-
08-1-0187 and NSF grant IIS-0910358.

7. REFERENCES
[1] A. Agogino and K. Tumer. Distributed evaluation

functions for fault tolerant multi rover systems. In
Proceedings of the Genetic and Evolutionary
Computation Conference, Seattle, WA, July 2006.

[2] A. K. Agogino and K. Tumer. Analyzing and
visualizing multiagent rewards in dynamic and
stochastic environments. Journal of Autonomous
Agents and Multi Agent Systems, 17(2):320–338, 2008.

[3] A. K. Agogino and K. Tumer. Efficient evaluation
functions for evolving coordination. Evolutionary
Computation, 16(2):257–288, 2008.

[4] M. Ahmadi and P. Stone. A multi-robot system for
continuous area sweeping tasks. In Proceedings of the
IEEE Conference on Robotics and Automation, pages
1724–1729, May 2006.

[5] M. Alden, A.-J. van Kesteren, and R. Miikkulainen.
Eugenic evolution utilizing a domain model. In
Proceedings of the Genetic and Evolutionary
Computation Conference (GECCO-2002), San
Francisco, CA, 2002.

[6] C. Claus and C. Boutilier. The dynamics of
reinforcement learning in cooperative multiagent
systems. In Proceedings of the Artificial Intelligence
Conference, pages 746–752, Madison, WI, July 1998.

[7] D. B. D’Ambrosio and K. O. Stanley. Generative
encoding for multiagent learning. In Genetic and
Evolutionary Computation Conference, 2008.

[8] B. P. Gerkey and M. J. Mataric. Multi-robot task
allocation: Analyzing the complexity and optimality
of key architectures. In Proceedings of the IEEE Int.
Conference on Robotics and Automation, pages
3862–3868, 2003.

[9] C. Guestrin, M. Lagoudakis, and R. Parr.
Coordinated reinforcement learning. In Proceedings of
the 19th International Conference on Machine
Learning, page 41Ű48, 2002.

[10] J. Hu and M. P. Wellman. Multiagent reinforcement
learning: Theoretical framework and an algorithm. In
Proceedings of the Fifteenth International Conference
on Machine Learning, pages 242–250, 1998.

[11] E. Manisterski, D. Sarne, and S. Kraus. Enhancing
mas cooperative search through coalition partitioning.
In Proc. Int’l Joint Conference on Artificial
Intelligence, pages 1415–1421, 2007.

[12] S. Nolfi, D. Floreano, O. Miglino, and F. Mondada.
How to evolve autonomous robots: Different
approaches in evolutionary robotics. In Proc. of
Artificial Life IV, pages 190–197, 1994.

[13] L. Panait. Improving coevolutionary search for
optimal multiagent behaviors. In International Joint
Conference on Artificial Intelligence, pages 653–658.
Morgan Kaufmann, 2003.

[14] L. Panait, S. Luke, and R. P. Wiegand. Biasing
coevolutionary search for optimal multiagent
behaviors. IEEE Transactions on Evolutionary
Computation, 10(6):629–645, 2006.

[15] D. Parkes and S. Singh. An MDP-based approach to
online mechanism design. In NIPS 16, pages 791–798,
2004.

[16] L. Soh and X. Li. An integrated multilevel learning
approach to multiagent coalition formation. In Proc.
Int’l Joint Conference on Artificial Intelligence, pages
619–625, 2003.

[17] S. Thrun and G. Sukhatme. Robotics: Science and
Systems I. MIT Press, 2005.

[18] K. Tumer and A. Agogino. Coordinating multi-rover
systems: Evaluation functions for dynamic and noisy
environments. In The Genetic and Evolutionary
Computation Conference, 2005.

[19] R. P. Wiegand, W. Liles, and K. D. Jong. Modeling
variation in cooperative coevolution using evolutionary
game theory, pages 203–220. Morgan Kaufmann, 2002.

[20] R. P. Wiegand and M. A. Potter. Robustness in
cooperative coevolution. In Genetic and Evolutionary
Computation Conference, pages 369–376. ACM Press,
2006.

[21] Y. Ye and Y. Tu. Dynamics of coalition formation in
combinatorial trading. In Proc. Int’l Joint Conference
on Artificial Intelligence, pages 625–632, 2003.


	ktumer-AFOSR-final-2011
	tumer-khani_acs09
	tumer-agogino-acs09
	tumer-knudson-gecco2010



